text_shortening_model_v3

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4219
  • Rouge1: 0.593
  • Rouge2: 0.3643
  • Rougel: 0.5423
  • Rougelsum: 0.5412
  • Bert precision: 0.8882
  • Bert recall: 0.9022
  • Average word count: 11.9
  • Max word count: 17
  • Min word count: 6
  • Average token count: 17.2857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count
1.6953 1.0 8 1.8235 0.5468 0.3281 0.4997 0.4987 0.8808 0.886 11.5786 18 6 16.8286
1.4749 2.0 16 1.6832 0.5482 0.3138 0.4936 0.4934 0.8776 0.8889 12.1429 18 5 17.2929
1.3967 3.0 24 1.6181 0.5653 0.3362 0.5121 0.512 0.8833 0.894 11.9143 18 5 17.0286
1.3533 4.0 32 1.5757 0.5631 0.338 0.5133 0.5133 0.8838 0.8948 11.8786 18 4 16.9929
1.3 5.0 40 1.5398 0.5748 0.3463 0.5256 0.525 0.8863 0.8977 11.95 18 4 16.9857
1.2528 6.0 48 1.5159 0.58 0.3475 0.5261 0.5247 0.8855 0.8988 11.9571 18 5 17.0429
1.2234 7.0 56 1.4974 0.5823 0.3515 0.5301 0.5289 0.8864 0.8993 11.8929 18 6 17.05
1.2024 8.0 64 1.4819 0.5846 0.3575 0.5326 0.5312 0.8876 0.9014 11.9143 18 6 17.1429
1.1665 9.0 72 1.4680 0.5881 0.3593 0.5367 0.5359 0.8877 0.9014 11.8571 17 6 17.1429
1.1589 10.0 80 1.4567 0.5873 0.359 0.5314 0.5305 0.8873 0.9004 11.7929 17 6 17.0429
1.1411 11.0 88 1.4501 0.5891 0.3627 0.5386 0.5373 0.8888 0.9017 11.85 17 6 17.1286
1.1188 12.0 96 1.4460 0.5911 0.364 0.5399 0.5391 0.8881 0.9024 11.95 17 6 17.2786
1.1061 13.0 104 1.4396 0.5908 0.3648 0.5395 0.5386 0.8881 0.9024 11.9071 17 6 17.3071
1.0939 14.0 112 1.4328 0.5904 0.3625 0.5392 0.5384 0.8876 0.9018 11.9071 17 6 17.3
1.0863 15.0 120 1.4305 0.5899 0.3633 0.5387 0.5379 0.8875 0.9015 11.8714 17 6 17.2714
1.0792 16.0 128 1.4286 0.5908 0.3636 0.5401 0.5392 0.8875 0.9018 11.8929 17 6 17.3
1.0871 17.0 136 1.4255 0.5908 0.3628 0.5401 0.5392 0.8878 0.9017 11.8714 17 6 17.2571
1.057 18.0 144 1.4229 0.5928 0.365 0.5427 0.5414 0.8886 0.9022 11.85 17 6 17.2357
1.0554 19.0 152 1.4221 0.593 0.3643 0.5423 0.5412 0.8882 0.9022 11.9 17 6 17.2857
1.06 20.0 160 1.4219 0.593 0.3643 0.5423 0.5412 0.8882 0.9022 11.9 17 6 17.2857

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v3

Base model

google-t5/t5-small
Finetuned
(1642)
this model