text_shortening_model_v31

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7416
  • Rouge1: 0.4961
  • Rouge2: 0.2712
  • Rougel: 0.4388
  • Rougelsum: 0.4386
  • Bert precision: 0.8749
  • Bert recall: 0.8711
  • Average word count: 8.5135
  • Max word count: 16
  • Min word count: 3
  • Average token count: 13.1592
  • % shortened texts with length > 12: 10.2102

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.1978 1.0 145 1.5250 0.4953 0.2842 0.4528 0.4524 0.8806 0.8681 7.8919 18 3 12.4234 4.2042
1.0092 2.0 290 1.4421 0.5257 0.3053 0.4698 0.4689 0.875 0.8809 9.6006 18 4 14.3574 19.2192
0.8932 3.0 435 1.4060 0.5266 0.3045 0.4728 0.472 0.8766 0.8776 9.0841 18 4 13.6366 14.7147
0.79 4.0 580 1.4022 0.5329 0.3136 0.4714 0.4714 0.8802 0.8797 8.952 16 4 13.6036 12.9129
0.7506 5.0 725 1.4514 0.5145 0.2935 0.4485 0.4485 0.8745 0.8726 8.97 18 4 13.6096 12.012
0.6981 6.0 870 1.4602 0.5146 0.2914 0.4566 0.4559 0.8778 0.8762 8.958 18 3 13.5195 15.3153
0.6426 7.0 1015 1.4745 0.5196 0.2973 0.4596 0.4593 0.8759 0.8788 9.1802 16 4 13.9159 14.1141
0.6251 8.0 1160 1.5026 0.5217 0.2965 0.461 0.4611 0.8802 0.8775 8.8198 16 4 13.3393 12.012
0.5901 9.0 1305 1.5890 0.5156 0.2967 0.4606 0.4609 0.8773 0.876 8.7718 17 3 13.4655 9.6096
0.5544 10.0 1450 1.6294 0.5172 0.287 0.4562 0.4559 0.8779 0.876 8.7688 18 4 13.5195 11.7117
0.5354 11.0 1595 1.6805 0.5169 0.2871 0.457 0.4571 0.8768 0.8774 8.994 17 4 13.6486 14.1141
0.5103 12.0 1740 1.7334 0.5121 0.2824 0.4556 0.455 0.8785 0.8745 8.5465 16 3 13.1021 8.1081
0.4796 13.0 1885 1.7767 0.499 0.2763 0.442 0.4418 0.8754 0.8739 8.6396 17 4 13.3183 11.4114
0.4825 14.0 2030 1.8319 0.5114 0.2849 0.4497 0.4501 0.8746 0.8758 8.994 17 4 13.6667 12.9129
0.4572 15.0 2175 1.8613 0.5129 0.2884 0.4546 0.4549 0.8785 0.8757 8.6877 17 3 13.3784 10.5105
0.4489 16.0 2320 1.8790 0.5144 0.2829 0.4533 0.4536 0.8777 0.8754 8.8078 16 3 13.4955 13.2132
0.4211 17.0 2465 1.9604 0.4936 0.2641 0.4322 0.4326 0.8735 0.8696 8.4985 17 3 13.1892 9.009
0.4246 18.0 2610 2.0639 0.4951 0.2634 0.4331 0.4334 0.8721 0.8703 8.7538 16 4 13.3453 12.6126
0.4063 19.0 2755 2.0587 0.499 0.2685 0.4378 0.4383 0.8741 0.8707 8.5916 16 3 13.3003 9.9099
0.3912 20.0 2900 2.1089 0.5068 0.2727 0.4471 0.4469 0.8764 0.8744 8.7538 18 3 13.4625 11.1111
0.3855 21.0 3045 2.1048 0.5022 0.2704 0.4473 0.4478 0.875 0.8728 8.6847 16 4 13.3483 9.3093
0.3808 22.0 3190 2.1804 0.4977 0.2722 0.4414 0.4412 0.875 0.8711 8.5315 17 4 13.0631 10.8108
0.3851 23.0 3335 2.1740 0.4993 0.2696 0.4442 0.4443 0.8742 0.8719 8.5676 15 3 13.2252 9.009
0.3741 24.0 3480 2.1872 0.4921 0.2683 0.4365 0.4369 0.8728 0.8692 8.5195 17 3 13.2192 8.4084
0.3604 25.0 3625 2.2617 0.4988 0.2681 0.4421 0.4426 0.8747 0.8705 8.5255 17 3 13.2492 8.1081
0.3676 26.0 3770 2.2561 0.4931 0.2603 0.4328 0.4331 0.874 0.8711 8.6276 15 3 13.3363 11.7117
0.3799 27.0 3915 2.2404 0.4912 0.2652 0.4329 0.433 0.8729 0.8702 8.6517 17 3 13.4414 8.1081
0.3617 28.0 4060 2.2728 0.4983 0.2704 0.4424 0.4427 0.8756 0.8734 8.7568 17 3 13.5225 11.4114
0.3588 29.0 4205 2.2695 0.4904 0.2601 0.4331 0.4328 0.8743 0.87 8.4775 18 3 13.1592 9.009
0.3567 30.0 4350 2.3006 0.4993 0.2693 0.4419 0.4417 0.8747 0.8737 8.8529 17 3 13.5976 12.012
0.3573 31.0 4495 2.3257 0.4979 0.2669 0.4378 0.4379 0.8743 0.8735 8.9069 18 3 13.6697 12.9129
0.3471 32.0 4640 2.3513 0.4989 0.2723 0.441 0.4405 0.8758 0.8728 8.6246 17 3 13.3063 10.8108
0.3591 33.0 4785 2.3467 0.4972 0.2751 0.4415 0.4413 0.8742 0.8727 8.8078 17 3 13.5616 10.5105
0.3401 34.0 4930 2.4229 0.4854 0.2661 0.4313 0.4318 0.8737 0.8701 8.5826 17 3 13.2673 8.7087
0.3476 35.0 5075 2.3804 0.4895 0.2602 0.4322 0.4326 0.874 0.8712 8.6577 17 3 13.2883 9.3093
0.3473 36.0 5220 2.4242 0.4938 0.2689 0.438 0.4387 0.8745 0.8713 8.5976 17 3 13.2432 9.3093
0.3415 37.0 5365 2.3836 0.4943 0.2617 0.4351 0.4351 0.8751 0.8711 8.4054 17 3 13.0571 8.1081
0.3549 38.0 5510 2.4110 0.501 0.2696 0.4402 0.4406 0.8765 0.8713 8.2282 17 3 12.9459 6.6066
0.3432 39.0 5655 2.4016 0.4999 0.27 0.4387 0.4393 0.8751 0.8712 8.5285 17 3 13.2402 8.4084
0.3387 40.0 5800 2.4546 0.4986 0.2718 0.4417 0.4422 0.8742 0.871 8.5766 17 3 13.2312 9.3093
0.3351 41.0 5945 2.4478 0.4981 0.2714 0.4367 0.4372 0.8756 0.8722 8.4775 15 3 13.1411 8.7087
0.3366 42.0 6090 2.4447 0.4961 0.2703 0.4359 0.437 0.8746 0.8699 8.4745 16 3 13.1231 9.3093
0.3324 43.0 6235 2.4974 0.4989 0.2809 0.4428 0.4432 0.8747 0.873 8.7147 16 3 13.4565 10.5105
0.3306 44.0 6380 2.4938 0.4902 0.2657 0.4301 0.4306 0.8733 0.8692 8.4925 15 3 13.1622 8.4084
0.3388 45.0 6525 2.5098 0.4788 0.2616 0.4246 0.4245 0.8734 0.8662 8.2162 16 3 12.7538 8.1081
0.346 46.0 6670 2.4595 0.4987 0.2689 0.438 0.4389 0.875 0.8718 8.5676 16 3 13.2252 9.9099
0.3401 47.0 6815 2.5098 0.4934 0.2653 0.4353 0.4356 0.8744 0.87 8.3934 15 3 13.048 8.1081
0.3271 48.0 6960 2.5204 0.4951 0.2674 0.4373 0.4372 0.8749 0.8703 8.4625 16 3 13.024 9.009
0.3267 49.0 7105 2.5291 0.4887 0.2605 0.428 0.4284 0.8728 0.8702 8.7057 18 3 13.3363 11.1111
0.3382 50.0 7250 2.5422 0.4899 0.2666 0.4354 0.4356 0.8755 0.8707 8.4505 16 3 13.0931 8.1081
0.3255 51.0 7395 2.5254 0.4921 0.2634 0.4346 0.4352 0.8738 0.8691 8.4535 16 3 13.027 10.2102
0.32 52.0 7540 2.5460 0.4991 0.2727 0.4423 0.4421 0.8745 0.873 8.8919 16 3 13.5736 11.7117
0.3154 53.0 7685 2.5446 0.5027 0.2712 0.4463 0.4463 0.8768 0.8734 8.6426 16 3 13.2973 11.1111
0.3293 54.0 7830 2.5378 0.4928 0.2669 0.4352 0.4354 0.8736 0.869 8.5225 16 3 13.1291 10.2102
0.3231 55.0 7975 2.5905 0.4949 0.2678 0.4378 0.4375 0.8743 0.8714 8.6426 15 3 13.3003 9.009
0.3239 56.0 8120 2.5884 0.4969 0.2697 0.4399 0.4399 0.8737 0.8712 8.6697 16 3 13.3754 10.5105
0.3174 57.0 8265 2.5500 0.4958 0.267 0.4389 0.4386 0.8739 0.8715 8.7327 16 4 13.3844 10.5105
0.3209 58.0 8410 2.5804 0.4989 0.2706 0.442 0.4426 0.8751 0.8717 8.5766 15 3 13.1952 9.3093
0.3297 59.0 8555 2.5909 0.494 0.2622 0.4343 0.4338 0.8733 0.8698 8.5976 16 3 13.1652 11.7117
0.3226 60.0 8700 2.5857 0.4976 0.2639 0.4377 0.438 0.8753 0.8701 8.3904 17 3 12.973 7.8078
0.3241 61.0 8845 2.5824 0.5011 0.2698 0.4428 0.4436 0.8764 0.8725 8.5345 16 3 13.1502 10.5105
0.3201 62.0 8990 2.6156 0.4968 0.2673 0.4371 0.4372 0.8755 0.8702 8.3904 16 3 12.979 6.9069
0.3234 63.0 9135 2.6374 0.4945 0.2677 0.4387 0.4388 0.8744 0.8693 8.4444 17 3 12.958 8.1081
0.3246 64.0 9280 2.6338 0.4912 0.2672 0.4396 0.4402 0.8738 0.8698 8.4955 17 3 13.1021 8.1081
0.3188 65.0 9425 2.6206 0.4999 0.2739 0.4443 0.4444 0.8763 0.8726 8.6006 17 3 13.2042 10.5105
0.3186 66.0 9570 2.6499 0.5007 0.2771 0.4462 0.4463 0.8765 0.8729 8.5375 17 3 13.2162 9.3093
0.319 67.0 9715 2.6488 0.5023 0.2715 0.4452 0.4454 0.8761 0.8736 8.6817 17 3 13.3904 10.2102
0.3328 68.0 9860 2.6238 0.5002 0.2696 0.4408 0.4411 0.8755 0.8717 8.5075 17 3 13.1081 9.009
0.3068 69.0 10005 2.6525 0.4971 0.2684 0.4391 0.4397 0.8755 0.8712 8.5045 17 3 13.1411 11.4114
0.3192 70.0 10150 2.6494 0.4976 0.2722 0.4395 0.4405 0.8762 0.8714 8.3964 17 3 13.033 8.4084
0.3232 71.0 10295 2.6642 0.4976 0.2717 0.4412 0.4411 0.8756 0.8717 8.5075 17 3 13.1622 9.9099
0.3084 72.0 10440 2.6596 0.4931 0.2669 0.4352 0.4354 0.8734 0.8696 8.4865 17 3 13.1682 9.009
0.313 73.0 10585 2.6551 0.4942 0.2699 0.4363 0.4368 0.8742 0.8699 8.4715 16 3 13.1201 9.6096
0.3194 74.0 10730 2.6769 0.4962 0.2689 0.4388 0.4389 0.874 0.8715 8.5976 17 3 13.2763 10.5105
0.3143 75.0 10875 2.6860 0.493 0.2652 0.4335 0.4343 0.8734 0.8702 8.5706 16 3 13.2462 9.3093
0.3209 76.0 11020 2.6777 0.4893 0.2592 0.4325 0.4324 0.8726 0.869 8.5225 16 3 13.2012 9.3093
0.3078 77.0 11165 2.6797 0.4877 0.261 0.4321 0.4323 0.8724 0.8693 8.5796 16 3 13.2402 9.6096
0.3192 78.0 11310 2.6812 0.495 0.2677 0.4382 0.4383 0.8739 0.871 8.5706 18 3 13.2523 10.8108
0.3147 79.0 11455 2.6777 0.495 0.2693 0.4371 0.4374 0.874 0.8707 8.5015 16 3 13.1471 9.3093
0.3049 80.0 11600 2.6767 0.4917 0.2647 0.4344 0.4346 0.8723 0.8696 8.5616 16 3 13.2162 9.9099
0.3191 81.0 11745 2.6932 0.4929 0.2683 0.4392 0.4392 0.8737 0.8707 8.5676 16 3 13.2342 9.6096
0.3073 82.0 11890 2.7036 0.4959 0.2699 0.4389 0.4393 0.8738 0.8722 8.6547 17 3 13.3964 10.2102
0.3129 83.0 12035 2.6941 0.4918 0.2657 0.4341 0.434 0.8742 0.8703 8.4985 16 3 13.1411 9.3093
0.3308 84.0 12180 2.6968 0.4927 0.2659 0.4335 0.4337 0.8737 0.8698 8.4955 16 3 13.1652 9.3093
0.3221 85.0 12325 2.6966 0.4903 0.2606 0.4306 0.4306 0.8726 0.8698 8.5766 16 3 13.2823 9.6096
0.3085 86.0 12470 2.7123 0.4862 0.2608 0.4288 0.4286 0.8723 0.8688 8.4595 16 3 13.0901 8.7087
0.3281 87.0 12615 2.7101 0.4918 0.2638 0.4322 0.4328 0.8731 0.8695 8.4775 16 3 13.1291 9.009
0.3183 88.0 12760 2.7102 0.4902 0.2649 0.4294 0.4301 0.873 0.8688 8.4955 16 3 13.0901 9.6096
0.3063 89.0 12905 2.7198 0.4934 0.2676 0.4338 0.4344 0.8734 0.8692 8.4565 17 3 13.0751 9.009
0.3123 90.0 13050 2.7228 0.492 0.2676 0.4338 0.4343 0.8732 0.8692 8.4535 17 3 13.0931 9.3093
0.3163 91.0 13195 2.7264 0.4953 0.2702 0.4357 0.4358 0.874 0.8693 8.4625 17 3 13.033 9.3093
0.3085 92.0 13340 2.7236 0.4934 0.2702 0.4369 0.4369 0.8738 0.8695 8.4925 17 3 13.0721 9.9099
0.3257 93.0 13485 2.7202 0.4953 0.2706 0.4368 0.4368 0.8746 0.8699 8.4595 16 3 13.0571 10.2102
0.3092 94.0 13630 2.7261 0.4988 0.2748 0.4415 0.4419 0.8755 0.8708 8.4535 16 3 13.0751 9.9099
0.3187 95.0 13775 2.7248 0.4968 0.2727 0.4383 0.4389 0.8751 0.8709 8.5075 16 3 13.1321 9.9099
0.3155 96.0 13920 2.7335 0.4962 0.2686 0.4372 0.4373 0.8749 0.8712 8.5135 16 3 13.1772 10.2102
0.3271 97.0 14065 2.7384 0.4971 0.2721 0.4396 0.4397 0.8749 0.8711 8.5135 16 3 13.1832 10.5105
0.3096 98.0 14210 2.7400 0.496 0.2712 0.4386 0.4385 0.8748 0.8711 8.5225 16 3 13.1682 10.2102
0.3116 99.0 14355 2.7411 0.4961 0.2712 0.4388 0.4386 0.8749 0.8711 8.5135 16 3 13.1592 10.2102
0.3102 100.0 14500 2.7416 0.4961 0.2712 0.4388 0.4386 0.8749 0.8711 8.5135 16 3 13.1592 10.2102

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
28
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v31

Base model

google-t5/t5-small
Finetuned
(1672)
this model