text_shortening_model_v32

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6385
  • Rouge1: 0.527
  • Rouge2: 0.3031
  • Rougel: 0.4768
  • Rougelsum: 0.4774
  • Bert precision: 0.8854
  • Bert recall: 0.8798
  • Average word count: 8.4444
  • Max word count: 17
  • Min word count: 4
  • Average token count: 12.7447
  • % shortened texts with length > 12: 10.2102

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.2885 1.0 73 1.5384 0.5094 0.2857 0.4536 0.4541 0.8746 0.8764 9.0631 17 3 13.9309 15.015
1.1256 2.0 146 1.4350 0.5228 0.3037 0.4677 0.4684 0.879 0.8771 8.7898 17 4 13.3423 14.1141
1.0169 3.0 219 1.3707 0.5356 0.3171 0.4797 0.4803 0.8806 0.8838 9.1141 17 4 13.7207 14.4144
0.9561 4.0 292 1.3611 0.5449 0.3213 0.4888 0.4896 0.8843 0.8862 8.8408 16 4 13.4865 9.009
0.8725 5.0 365 1.3343 0.5422 0.3199 0.4936 0.4943 0.8847 0.8866 9.0781 16 4 13.6547 11.7117
0.823 6.0 438 1.3632 0.5405 0.3183 0.4913 0.4923 0.8849 0.8824 8.5886 16 4 13.1021 12.9129
0.7673 7.0 511 1.3989 0.5425 0.3181 0.4856 0.4863 0.8815 0.8849 9.2342 16 5 13.7117 15.9159
0.7449 8.0 584 1.4205 0.5391 0.3196 0.4841 0.4845 0.8838 0.8821 8.7207 16 4 13.1201 12.9129
0.7134 9.0 657 1.4581 0.5441 0.3128 0.4884 0.4888 0.8853 0.885 8.6937 16 4 13.2913 7.8078
0.6875 10.0 730 1.4754 0.5434 0.3148 0.4886 0.4884 0.8865 0.8838 8.6727 16 3 13.1081 10.5105
0.6786 11.0 803 1.4771 0.5411 0.3107 0.4891 0.4895 0.8874 0.8836 8.5435 16 4 13.03 8.4084
0.6388 12.0 876 1.5743 0.5379 0.309 0.482 0.4829 0.8851 0.8807 8.5495 15 4 13.033 10.8108
0.6202 13.0 949 1.6033 0.5423 0.3078 0.4852 0.4858 0.8875 0.8834 8.4414 16 2 12.982 9.009
0.6046 14.0 1022 1.6242 0.5352 0.3073 0.4793 0.4795 0.8851 0.8812 8.5165 16 2 12.994 9.9099
0.6019 15.0 1095 1.6496 0.539 0.3001 0.4802 0.4805 0.8861 0.8832 8.7748 16 4 13.1111 9.9099
0.5717 16.0 1168 1.7001 0.5471 0.3198 0.4947 0.4954 0.8876 0.8869 8.8498 17 4 13.3153 14.4144
0.5567 17.0 1241 1.7371 0.5304 0.3012 0.4802 0.4805 0.8849 0.8809 8.4955 16 2 12.8919 9.9099
0.5458 18.0 1314 1.7639 0.5312 0.299 0.4782 0.4784 0.8858 0.8812 8.5045 15 4 13.012 9.009
0.528 19.0 1387 1.8120 0.5282 0.306 0.4791 0.4794 0.8857 0.8819 8.5886 16 3 12.9009 10.8108
0.5055 20.0 1460 1.8516 0.5357 0.3088 0.4793 0.4796 0.8863 0.8821 8.6366 16 4 13.1141 9.3093
0.5098 21.0 1533 1.8717 0.5304 0.2966 0.4746 0.4745 0.8843 0.8806 8.5946 16 4 13.039 9.9099
0.5143 22.0 1606 1.9507 0.533 0.3006 0.4813 0.4819 0.8855 0.8815 8.4895 18 2 12.967 8.4084
0.4923 23.0 1679 1.9452 0.5263 0.2936 0.4748 0.474 0.8845 0.8805 8.4985 16 2 12.9309 9.009
0.4891 24.0 1752 1.9700 0.5306 0.3027 0.48 0.4803 0.8862 0.881 8.4565 15 4 12.982 7.2072
0.4902 25.0 1825 2.0222 0.5336 0.3079 0.4833 0.4836 0.8867 0.8826 8.5465 16 4 12.9429 10.2102
0.4691 26.0 1898 2.0300 0.5332 0.3083 0.4831 0.4838 0.8862 0.8829 8.6036 15 4 13.1231 12.3123
0.4554 27.0 1971 2.0376 0.5345 0.3074 0.4802 0.4802 0.8877 0.8822 8.4354 16 4 12.8018 7.2072
0.4668 28.0 2044 2.0778 0.534 0.3056 0.4836 0.4839 0.8852 0.8816 8.5946 18 4 13.0691 10.5105
0.4637 29.0 2117 2.0837 0.5255 0.2986 0.4761 0.4769 0.8839 0.881 8.5105 16 4 13.048 9.6096
0.4568 30.0 2190 2.1224 0.5332 0.3045 0.4805 0.4801 0.8842 0.8833 8.8198 18 4 13.3483 13.8138
0.4602 31.0 2263 2.1452 0.5323 0.3019 0.4776 0.4775 0.8842 0.882 8.6637 18 4 13.1682 11.7117
0.4584 32.0 2336 2.1395 0.5379 0.3125 0.4873 0.4875 0.8839 0.883 8.7808 15 4 13.3754 10.8108
0.4495 33.0 2409 2.1839 0.5295 0.3002 0.4767 0.4763 0.882 0.8819 8.8979 17 4 13.4685 13.5135
0.4418 34.0 2482 2.2072 0.5266 0.3009 0.477 0.4769 0.8836 0.8791 8.5375 15 2 12.9459 10.5105
0.4378 35.0 2555 2.2251 0.5242 0.2946 0.4728 0.4729 0.883 0.8784 8.5255 17 4 12.8709 10.8108
0.4224 36.0 2628 2.2447 0.5296 0.3023 0.4774 0.4785 0.8843 0.88 8.5736 15 4 12.979 10.8108
0.4322 37.0 2701 2.2509 0.5187 0.2921 0.4694 0.4698 0.8824 0.877 8.4535 15 4 12.8949 12.3123
0.4367 38.0 2774 2.2949 0.5166 0.2887 0.4646 0.4653 0.8807 0.876 8.5465 17 4 12.9369 12.012
0.4301 39.0 2847 2.2866 0.5256 0.298 0.4693 0.4696 0.8825 0.8777 8.5255 16 4 13.0 9.9099
0.4219 40.0 2920 2.2993 0.5213 0.2908 0.4697 0.4699 0.8833 0.8788 8.5646 15 4 13.03 10.5105
0.4165 41.0 2993 2.3157 0.5226 0.2977 0.4697 0.4695 0.884 0.878 8.3964 15 4 12.7988 9.9099
0.4352 42.0 3066 2.3181 0.5199 0.2854 0.4641 0.4641 0.8822 0.8769 8.4925 17 4 12.7958 10.5105
0.4209 43.0 3139 2.3455 0.5247 0.2943 0.4743 0.4746 0.8833 0.8812 8.6757 17 4 13.1111 11.1111
0.4227 44.0 3212 2.3553 0.5146 0.2885 0.4631 0.4638 0.883 0.8765 8.3213 17 4 12.5736 9.9099
0.4205 45.0 3285 2.3684 0.5205 0.2925 0.4652 0.4658 0.8821 0.8779 8.4895 15 4 12.952 11.4114
0.4039 46.0 3358 2.3505 0.5254 0.3 0.4741 0.4742 0.8835 0.8792 8.5105 17 4 12.9339 10.5105
0.41 47.0 3431 2.3901 0.522 0.2994 0.4712 0.4718 0.8829 0.8792 8.5195 16 4 12.9339 11.1111
0.4104 48.0 3504 2.4093 0.5263 0.3 0.473 0.4736 0.8856 0.8791 8.3243 17 4 12.7207 9.009
0.412 49.0 3577 2.4144 0.523 0.2983 0.4702 0.4703 0.8828 0.8804 8.7688 17 4 13.1982 11.7117
0.4165 50.0 3650 2.4154 0.5206 0.2966 0.468 0.4679 0.8836 0.8798 8.6607 17 4 13.048 9.3093
0.4019 51.0 3723 2.4539 0.5242 0.3013 0.474 0.4751 0.8845 0.8806 8.6096 17 3 12.988 11.1111
0.3948 52.0 3796 2.4132 0.5267 0.2984 0.4741 0.4749 0.8834 0.8802 8.6847 17 3 13.1592 13.2132
0.4105 53.0 3869 2.4407 0.5214 0.2937 0.4676 0.4682 0.882 0.8799 8.7117 17 4 13.0901 12.9129
0.4115 54.0 3942 2.4676 0.5292 0.3007 0.4783 0.479 0.8865 0.8797 8.3243 17 3 12.6667 8.4084
0.3972 55.0 4015 2.4592 0.5273 0.3041 0.4777 0.4784 0.8864 0.8799 8.3784 17 3 12.7778 10.8108
0.3965 56.0 4088 2.4719 0.5157 0.293 0.4657 0.4656 0.8829 0.8777 8.4084 17 3 12.7598 10.2102
0.4106 57.0 4161 2.4792 0.52 0.2942 0.4685 0.4692 0.8839 0.8797 8.5165 17 4 12.9309 9.9099
0.3923 58.0 4234 2.5007 0.5229 0.2991 0.4733 0.4738 0.8852 0.88 8.5345 18 4 12.8739 11.4114
0.4065 59.0 4307 2.4745 0.5201 0.2921 0.4686 0.4693 0.8829 0.8788 8.5826 17 4 13.006 10.2102
0.4095 60.0 4380 2.4775 0.5187 0.2925 0.4683 0.4685 0.8826 0.8804 8.6817 15 4 13.1141 10.8108
0.4016 61.0 4453 2.4853 0.5178 0.2897 0.467 0.4675 0.8823 0.8786 8.5766 15 4 13.003 10.8108
0.4015 62.0 4526 2.4844 0.5255 0.2908 0.4704 0.4713 0.8839 0.8799 8.5616 16 4 13.03 9.6096
0.399 63.0 4599 2.5017 0.52 0.2909 0.4669 0.4674 0.8835 0.8793 8.5405 16 4 12.9159 9.009
0.4075 64.0 4672 2.5025 0.523 0.2976 0.4734 0.4741 0.885 0.88 8.5015 17 4 12.8709 9.9099
0.3977 65.0 4745 2.5306 0.5213 0.3006 0.4743 0.4747 0.8842 0.8799 8.4745 17 4 12.9279 10.5105
0.3978 66.0 4818 2.5439 0.5219 0.2982 0.4719 0.472 0.8842 0.8792 8.4414 17 4 12.7357 9.9099
0.3971 67.0 4891 2.5319 0.5293 0.2998 0.4762 0.4769 0.8856 0.8811 8.6156 17 4 12.9309 9.3093
0.3881 68.0 4964 2.5460 0.5216 0.2947 0.4714 0.4715 0.8848 0.879 8.3453 17 4 12.6847 8.4084
0.3947 69.0 5037 2.5447 0.527 0.2998 0.4741 0.4745 0.8844 0.8812 8.5856 17 4 13.015 10.8108
0.3862 70.0 5110 2.5670 0.5271 0.304 0.4766 0.4775 0.885 0.8811 8.5556 17 4 12.9249 9.9099
0.3947 71.0 5183 2.5535 0.5224 0.2984 0.4701 0.4703 0.8844 0.8795 8.5075 17 4 12.8559 10.8108
0.4056 72.0 5256 2.5729 0.5266 0.2987 0.4727 0.4737 0.8837 0.8812 8.6306 17 4 13.0601 11.1111
0.3906 73.0 5329 2.5667 0.5231 0.2982 0.4691 0.4699 0.8828 0.8802 8.6036 17 4 13.0571 10.2102
0.3875 74.0 5402 2.5688 0.5252 0.2972 0.4697 0.4709 0.8836 0.8804 8.5946 17 4 12.994 10.2102
0.3869 75.0 5475 2.5824 0.5283 0.3009 0.4741 0.4743 0.885 0.8823 8.6306 17 4 13.03 11.1111
0.3797 76.0 5548 2.5827 0.5242 0.2992 0.4717 0.4723 0.8838 0.882 8.6697 17 4 13.1021 11.4114
0.3716 77.0 5621 2.5992 0.5197 0.2971 0.4667 0.4681 0.8833 0.8803 8.5766 17 4 12.973 11.7117
0.3852 78.0 5694 2.5840 0.5226 0.3008 0.4703 0.4711 0.8839 0.8803 8.5616 17 3 12.979 11.1111
0.4031 79.0 5767 2.5853 0.5328 0.3096 0.4794 0.4798 0.887 0.882 8.4865 17 3 12.8679 8.7087
0.3849 80.0 5840 2.5943 0.5315 0.3101 0.4811 0.4818 0.8863 0.882 8.4925 17 3 12.8979 8.7087
0.3937 81.0 5913 2.5984 0.5278 0.3033 0.4763 0.4766 0.8851 0.8813 8.5646 17 3 12.9189 9.9099
0.402 82.0 5986 2.6003 0.5229 0.2993 0.4709 0.4717 0.8841 0.8793 8.5135 17 3 12.8889 10.5105
0.4004 83.0 6059 2.6012 0.5261 0.3025 0.4751 0.4756 0.8849 0.8805 8.4835 17 3 12.8138 11.1111
0.3968 84.0 6132 2.6119 0.5266 0.3042 0.4755 0.476 0.8858 0.8811 8.4835 17 3 12.8198 10.5105
0.393 85.0 6205 2.6203 0.5269 0.3026 0.4736 0.4745 0.8856 0.8811 8.5045 17 4 12.8228 10.5105
0.4003 86.0 6278 2.6245 0.5281 0.3035 0.4741 0.4752 0.8856 0.8808 8.4474 17 4 12.7598 9.9099
0.3923 87.0 6351 2.6331 0.5238 0.2992 0.4726 0.4729 0.8848 0.8799 8.4114 17 4 12.7658 9.9099
0.3958 88.0 6424 2.6281 0.5265 0.3015 0.4747 0.4751 0.8848 0.8806 8.4925 17 4 12.8258 10.5105
0.3938 89.0 6497 2.6312 0.5261 0.3034 0.4753 0.4759 0.8848 0.8805 8.4715 17 4 12.8348 10.8108
0.3698 90.0 6570 2.6221 0.5253 0.3018 0.4734 0.4744 0.8845 0.8803 8.4775 17 4 12.8228 10.5105
0.3946 91.0 6643 2.6173 0.5258 0.3025 0.4739 0.4748 0.8849 0.8806 8.4625 17 4 12.8378 10.2102
0.3933 92.0 6716 2.6259 0.5269 0.302 0.476 0.4764 0.8851 0.88 8.4444 17 4 12.7928 10.5105
0.3915 93.0 6789 2.6323 0.5314 0.306 0.4783 0.4789 0.8858 0.8814 8.5195 17 4 12.8739 11.1111
0.3936 94.0 6862 2.6365 0.5293 0.3039 0.4778 0.4785 0.8857 0.8807 8.4775 17 4 12.8048 10.5105
0.3853 95.0 6935 2.6385 0.5294 0.3042 0.4783 0.4788 0.8857 0.8808 8.4835 17 4 12.8198 10.5105
0.3871 96.0 7008 2.6379 0.5283 0.3059 0.4778 0.4786 0.8858 0.8806 8.4865 17 4 12.8198 9.6096
0.3769 97.0 7081 2.6410 0.5283 0.3057 0.4784 0.479 0.8857 0.8806 8.5015 17 4 12.8228 10.2102
0.3997 98.0 7154 2.6420 0.5279 0.3048 0.4777 0.4784 0.8852 0.8801 8.4655 17 4 12.7928 10.2102
0.3935 99.0 7227 2.6392 0.5267 0.3033 0.4763 0.4771 0.8852 0.8799 8.4444 17 4 12.7568 10.2102
0.3891 100.0 7300 2.6385 0.527 0.3031 0.4768 0.4774 0.8854 0.8798 8.4444 17 4 12.7447 10.2102

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v32

Base model

google-t5/t5-small
Finetuned
(1672)
this model