ldos's picture
End of training
6e73a9e
metadata
license: mit
base_model: facebook/bart-large-xsum
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: text_shortening_model_v35
    results: []

text_shortening_model_v35

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1783
  • Rouge1: 0.4993
  • Rouge2: 0.2724
  • Rougel: 0.4472
  • Rougelsum: 0.4467
  • Bert precision: 0.8744
  • Bert recall: 0.8769
  • Average word count: 8.6096
  • Max word count: 20
  • Min word count: 5
  • Average token count: 14.97
  • % shortened texts with length > 12: 3.6036

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.83 1.0 37 1.9642 0.457 0.2329 0.4049 0.4054 0.8677 0.8663 8.027 13 4 16.6607 2.7027
0.8629 2.0 74 1.6943 0.5268 0.3019 0.4695 0.4697 0.8758 0.8901 10.0571 19 5 17.8258 19.2192
0.7849 3.0 111 1.6564 0.5001 0.279 0.4553 0.4554 0.873 0.8805 8.9099 17 5 15.4865 5.1051
0.6116 4.0 148 1.7559 0.4638 0.2376 0.4183 0.4188 0.863 0.8665 8.4414 15 4 13.8829 0.9009
0.3976 5.0 185 1.6708 0.4999 0.2723 0.4481 0.4481 0.8744 0.8766 8.5556 16 5 14.6877 3.9039
0.2977 6.0 222 1.7196 0.4937 0.2699 0.4376 0.4379 0.8684 0.877 9.1652 20 5 15.3964 5.7057
0.2187 7.0 259 1.7942 0.5129 0.2905 0.4572 0.4575 0.8765 0.8803 8.7117 19 5 14.6306 3.9039
0.1603 8.0 296 1.8003 0.4822 0.2538 0.4237 0.4229 0.8688 0.8722 8.6306 19 5 15.4474 5.7057
0.1175 9.0 333 2.0138 0.5024 0.2798 0.4486 0.4475 0.8742 0.8791 8.7988 19 5 16.1471 6.6066
0.0859 10.0 370 2.1783 0.4993 0.2724 0.4472 0.4467 0.8744 0.8769 8.6096 20 5 14.97 3.6036

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3