ldos's picture
End of training
3b47df7
metadata
license: mit
base_model: facebook/bart-large-xsum
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: text_shortening_model_v36
    results: []

text_shortening_model_v36

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9367
  • Rouge1: 0.4747
  • Rouge2: 0.2555
  • Rougel: 0.4212
  • Rougelsum: 0.4204
  • Bert precision: 0.8696
  • Bert recall: 0.87
  • Average word count: 8.6396
  • Max word count: 17
  • Min word count: 4
  • Average token count: 16.6216
  • % shortened texts with length > 12: 6.3063

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.571 1.0 73 2.1904 0.4703 0.2572 0.4224 0.4216 0.8718 0.8704 8.2583 14 3 14.2973 1.5015
0.8809 2.0 146 1.9224 0.4588 0.2414 0.4177 0.417 0.8734 0.8673 8.2492 22 3 15.8078 3.9039
0.7135 3.0 219 2.7437 0.2535 0.082 0.2289 0.2294 0.8131 0.8149 8.4324 11 5 14.973 0.0
0.5646 4.0 292 2.0495 0.4689 0.249 0.4155 0.4156 0.8653 0.8736 9.8438 20 4 18.0961 21.3213
0.4158 5.0 365 2.0101 0.4707 0.2539 0.4241 0.4243 0.8688 0.8725 8.9009 14 4 14.7988 4.2042
0.3445 6.0 438 2.0642 0.4606 0.255 0.4133 0.4132 0.866 0.8705 9.0991 15 4 14.955 6.3063
0.2473 7.0 511 2.2675 0.4668 0.2441 0.4137 0.413 0.8683 0.8694 8.7177 19 3 16.5766 9.3093
0.2084 8.0 584 2.4474 0.4793 0.2608 0.4256 0.4257 0.8701 0.8741 9.1021 17 4 17.048 9.9099
0.1703 9.0 657 2.3961 0.4754 0.2609 0.4253 0.4253 0.8676 0.8749 9.2943 17 4 17.2402 11.4114
0.1293 10.0 730 2.4721 0.4581 0.2463 0.409 0.4082 0.8657 0.8671 8.7057 18 4 16.3514 6.9069
0.1312 11.0 803 2.4027 0.4667 0.2497 0.4117 0.4113 0.868 0.8683 8.4925 18 4 15.4294 5.1051
0.1424 12.0 876 2.5041 0.476 0.2506 0.4214 0.4214 0.8715 0.8699 8.6186 18 4 16.1862 6.006
0.0926 13.0 949 2.7011 0.4723 0.2582 0.4238 0.4227 0.8695 0.8701 8.6096 19 4 16.4505 5.7057
0.0663 14.0 1022 2.8149 0.467 0.2504 0.4157 0.4153 0.8674 0.8675 8.6336 17 4 16.4985 5.1051
0.0684 15.0 1095 2.9367 0.4747 0.2555 0.4212 0.4204 0.8696 0.87 8.6396 17 4 16.6216 6.3063

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3