text_shortening_model_v4

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4263
  • Rouge1: 0.587
  • Rouge2: 0.3563
  • Rougel: 0.5367
  • Rougelsum: 0.5356
  • Bert precision: 0.8882
  • Bert recall: 0.9005
  • Average word count: 11.8286
  • Max word count: 18
  • Min word count: 6
  • Average token count: 17.0929

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count
1.3135 1.0 8 1.8236 0.5468 0.3281 0.4997 0.4987 0.8808 0.886 11.5786 18 6 16.8286
1.1741 2.0 16 1.6858 0.5482 0.3138 0.4936 0.4934 0.8776 0.8889 12.1429 18 5 17.2929
1.1284 3.0 24 1.6250 0.5601 0.3292 0.5053 0.5053 0.8817 0.8922 12.0357 18 5 17.0786
1.1142 4.0 32 1.5850 0.5645 0.3397 0.5164 0.516 0.8839 0.8954 11.9357 18 4 17.0571
1.0745 5.0 40 1.5500 0.5777 0.3465 0.5272 0.5263 0.8863 0.8995 12.1071 18 4 17.2143
1.0354 6.0 48 1.5235 0.5796 0.3451 0.5263 0.5252 0.8859 0.8992 12.0 18 5 17.1
1.0126 7.0 56 1.5026 0.5859 0.3509 0.53 0.5291 0.8873 0.8998 11.8786 18 5 17.0714
1.0087 8.0 64 1.4877 0.5828 0.3511 0.5323 0.5304 0.8869 0.8989 11.8143 18 6 16.9857
0.9745 9.0 72 1.4758 0.5879 0.3533 0.5343 0.5332 0.8874 0.9008 11.8857 18 6 17.0786
0.9712 10.0 80 1.4638 0.585 0.3532 0.5319 0.5303 0.8878 0.9007 11.8643 18 6 17.0643
0.9556 11.0 88 1.4567 0.5909 0.3546 0.5348 0.5336 0.8879 0.9014 11.9357 18 6 17.1571
0.9413 12.0 96 1.4540 0.5881 0.3533 0.5351 0.5342 0.8879 0.9015 11.9571 18 6 17.25
0.9344 13.0 104 1.4489 0.5904 0.3602 0.5388 0.5374 0.8879 0.9013 11.9714 18 6 17.2643
0.929 14.0 112 1.4399 0.5866 0.355 0.5348 0.5338 0.8877 0.9006 11.8929 18 6 17.1857
0.9118 15.0 120 1.4353 0.5885 0.3569 0.537 0.5362 0.8883 0.9004 11.8 18 6 17.0857
0.9075 16.0 128 1.4326 0.5862 0.3531 0.5337 0.5329 0.8875 0.8998 11.8286 18 6 17.1143
0.9217 17.0 136 1.4296 0.5841 0.3547 0.534 0.5331 0.8882 0.9 11.7929 18 6 17.0571
0.8936 18.0 144 1.4270 0.5856 0.3558 0.5356 0.5347 0.8888 0.9003 11.75 18 6 17.0143
0.8848 19.0 152 1.4262 0.587 0.3564 0.5369 0.5357 0.8884 0.9005 11.8214 18 6 17.0857
0.8913 20.0 160 1.4263 0.587 0.3563 0.5367 0.5356 0.8882 0.9005 11.8286 18 6 17.0929

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
31
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v4

Base model

google-t5/t5-small
Finetuned
(1642)
this model