Edit model card

text_shortening_model_v42

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2972
  • Rouge1: 0.4588
  • Rouge2: 0.2356
  • Rougel: 0.4162
  • Rougelsum: 0.4165
  • Bert precision: 0.8664
  • Bert recall: 0.8655
  • Average word count: 8.5616
  • Max word count: 16
  • Min word count: 4
  • Average token count: 16.1051
  • % shortened texts with length > 12: 4.8048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.1087 1.0 73 2.0307 0.4468 0.2283 0.3951 0.394 0.8582 0.8635 8.5435 15 4 14.6997 3.6036
0.6451 2.0 146 2.0108 0.4629 0.2419 0.4159 0.4142 0.8724 0.8668 8.1081 17 5 14.7718 4.2042
0.4594 3.0 219 1.9499 0.4267 0.229 0.3887 0.3882 0.8579 0.8575 8.3093 16 5 13.976 1.8018
0.4681 4.0 292 2.0819 0.4127 0.2049 0.3734 0.372 0.8549 0.8543 8.3123 17 4 15.3514 3.6036
0.334 5.0 365 2.1413 0.4302 0.2184 0.3885 0.3886 0.857 0.8595 8.8589 15 4 14.5285 3.6036
0.296 6.0 438 2.0881 0.4716 0.2349 0.4216 0.4217 0.8684 0.8706 8.7928 16 5 15.0841 6.006
0.2588 7.0 511 2.2671 0.4517 0.2262 0.4085 0.4079 0.8654 0.8632 8.4985 14 4 14.8258 3.3033
0.1883 8.0 584 2.4313 0.4572 0.2369 0.409 0.4099 0.8646 0.867 8.7207 16 5 14.2192 4.2042
0.1822 9.0 657 2.3293 0.4413 0.2154 0.3943 0.3936 0.857 0.8619 8.8318 16 4 16.2973 6.006
0.1298 10.0 730 2.4037 0.4614 0.2303 0.4145 0.4144 0.8668 0.866 8.4715 18 4 15.8348 6.3063
0.1413 11.0 803 2.7031 0.4533 0.2337 0.4099 0.4095 0.8656 0.8637 8.2943 16 4 15.9009 4.2042
0.0786 12.0 876 2.5766 0.441 0.2218 0.3982 0.3982 0.8609 0.8613 8.5916 16 4 15.8228 3.6036
0.0662 13.0 949 2.8013 0.4408 0.2177 0.3989 0.3984 0.8573 0.8596 8.5946 15 4 16.4204 4.2042
0.0635 14.0 1022 2.8125 0.44 0.2265 0.3974 0.3975 0.8591 0.8618 8.8919 17 4 16.7898 4.5045
0.0648 15.0 1095 2.7665 0.4642 0.2371 0.42 0.4197 0.8662 0.8675 8.7477 16 4 15.6186 4.8048
0.0446 16.0 1168 3.1244 0.4599 0.2327 0.4211 0.4205 0.8656 0.8667 8.6396 16 4 16.1351 5.7057
0.0475 17.0 1241 3.3107 0.4626 0.24 0.422 0.4221 0.8673 0.8696 8.7027 16 5 16.3934 5.4054
0.0332 18.0 1314 3.1808 0.465 0.2413 0.4231 0.4231 0.8672 0.867 8.5315 16 5 16.048 5.1051
0.0252 19.0 1387 3.2446 0.4587 0.2315 0.4142 0.4143 0.866 0.8655 8.5586 16 4 16.012 4.8048
0.0294 20.0 1460 3.2972 0.4588 0.2356 0.4162 0.4165 0.8664 0.8655 8.5616 16 4 16.1051 4.8048

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v42

Finetuned
(50)
this model