ldos's picture
End of training
b5898f9
metadata
license: mit
base_model: facebook/bart-large-xsum
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: text_shortening_model_v45
    results: []

text_shortening_model_v45

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 26.8982
  • Rouge1: 0.0
  • Rouge2: 0.0
  • Rougel: 0.0
  • Rougelsum: 0.0
  • Bert precision: 0.6649
  • Bert recall: 0.672
  • Average word count: 1.0
  • Max word count: 1
  • Min word count: 1
  • Average token count: 62.0
  • % shortened texts with length > 12: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
3.3791 1.0 83 6.7318 0.0982 0.0 0.0972 0.0969 0.6855 0.6599 1.2937 2 1 16.7619 0.0
2.8727 2.0 166 10.3841 0.0 0.0 0.0 0.0 0.674 0.6911 3.0 3 3 62.0 0.0
2.7805 3.0 249 10.0261 0.0345 0.0 0.0346 0.0345 0.6746 0.6819 2.0 2 2 62.0 0.0
2.7183 4.0 332 9.5191 0.0 0.0 0.0 0.0 0.673 0.6736 1.0 1 1 62.0 0.0
2.7086 5.0 415 10.4466 0.0 0.0 0.0 0.0 0.6568 0.6648 1.0 1 1 62.0 0.0
2.6474 6.0 498 13.9665 0.0 0.0 0.0 0.0 0.6641 0.6709 1.0 1 1 62.0 0.0
2.63 7.0 581 13.3621 0.0 0.0 0.0 0.0 0.6457 0.6701 1.0 1 1 62.0 0.0
2.5998 8.0 664 13.0602 0.0 0.0 0.0 0.0 0.6618 0.6672 1.0 1 1 62.0 0.0
2.5689 9.0 747 15.0760 0.0 0.0 0.0 0.0 0.6591 0.6651 1.0 1 1 62.0 0.0
2.5508 10.0 830 15.6936 0.0 0.0 0.0 0.0 0.6649 0.6716 1.0 1 1 62.0 0.0
2.5298 11.0 913 16.8446 0.0 0.0 0.0 0.0 0.6604 0.6648 1.0 1 1 62.0 0.0
2.5091 12.0 996 21.0673 0.0 0.0 0.0 0.0 0.6721 0.6702 1.0 1 1 62.0 0.0
2.5019 13.0 1079 25.5628 0.0 0.0 0.0 0.0 0.6605 0.67 1.0 1 1 62.0 0.0
2.4826 14.0 1162 25.1203 0.0 0.0 0.0 0.0 0.6725 0.6666 1.0 1 1 62.0 0.0
2.4693 15.0 1245 26.8982 0.0 0.0 0.0 0.0 0.6649 0.672 1.0 1 1 62.0 0.0

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3