text_shortening_model_v6

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5555
  • Rouge1: 0.5993
  • Rouge2: 0.3696
  • Rougel: 0.551
  • Rougelsum: 0.5503
  • Bert precision: 0.8968
  • Bert recall: 0.9029
  • Average word count: 11.2357
  • Max word count: 17
  • Min word count: 7
  • Average token count: 16.4143

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count
1.2879 1.0 4 1.7189 0.5385 0.3175 0.4882 0.4875 0.8762 0.886 11.8071 18 5 17.1429
1.1303 2.0 8 1.6107 0.5599 0.337 0.5115 0.5117 0.8853 0.8916 11.2071 18 4 16.3071
1.0984 3.0 12 1.5545 0.5828 0.354 0.5254 0.5252 0.8885 0.8985 11.5286 17 4 16.5714
1.052 4.0 16 1.4943 0.5841 0.3631 0.5384 0.5372 0.8917 0.9004 11.3857 17 5 16.6143
0.9922 5.0 20 1.4517 0.5869 0.3671 0.5437 0.5432 0.8912 0.9011 11.5429 17 5 16.7929
0.9524 6.0 24 1.4308 0.5807 0.3571 0.5332 0.5333 0.8883 0.8994 11.6857 17 5 17.0357
0.9008 7.0 28 1.4152 0.5859 0.3585 0.5333 0.5319 0.8885 0.8974 11.4857 17 5 16.7786
0.8787 8.0 32 1.4089 0.5868 0.3592 0.5366 0.5363 0.8901 0.8991 11.4071 17 5 16.8071
0.857 9.0 36 1.4031 0.5974 0.3747 0.5496 0.5494 0.892 0.9015 11.5214 17 5 16.95
0.8122 10.0 40 1.3961 0.5965 0.3716 0.5487 0.5484 0.8917 0.9031 11.7071 17 6 17.1214
0.7943 11.0 44 1.3922 0.6068 0.3774 0.5572 0.5566 0.8947 0.9058 11.5929 17 6 16.9857
0.7632 12.0 48 1.3949 0.6011 0.371 0.55 0.549 0.8944 0.9039 11.4214 16 5 16.9
0.7464 13.0 52 1.3949 0.6007 0.3757 0.5506 0.5492 0.8938 0.9046 11.4357 16 5 16.8714
0.7235 14.0 56 1.3957 0.6113 0.3814 0.5609 0.5601 0.8965 0.9078 11.5429 16 6 16.8714
0.7293 15.0 60 1.3988 0.6102 0.3809 0.5615 0.56 0.8948 0.9079 11.7 16 6 17.15
0.7188 16.0 64 1.3954 0.6094 0.381 0.5603 0.5588 0.8965 0.9062 11.35 16 6 16.8071
0.7028 17.0 68 1.3969 0.6068 0.3846 0.5581 0.5568 0.896 0.9052 11.2571 16 6 16.65
0.6792 18.0 72 1.4056 0.6007 0.3777 0.5519 0.5508 0.895 0.9048 11.3214 16 6 16.6214
0.671 19.0 76 1.4142 0.6043 0.3779 0.5549 0.5541 0.8954 0.9046 11.2429 15 6 16.5429
0.6644 20.0 80 1.4202 0.6009 0.3767 0.5502 0.5496 0.8955 0.9028 11.1643 16 6 16.3643
0.6526 21.0 84 1.4256 0.6023 0.374 0.5485 0.5485 0.8958 0.9032 11.1857 17 6 16.35
0.6311 22.0 88 1.4356 0.6059 0.3768 0.5492 0.5488 0.8932 0.9042 11.5 17 6 16.7214
0.6448 23.0 92 1.4432 0.6071 0.3768 0.5519 0.5518 0.8935 0.9044 11.5357 17 6 16.7643
0.6344 24.0 96 1.4457 0.6088 0.3823 0.5583 0.5576 0.8985 0.9052 11.1214 16 6 16.3071
0.6299 25.0 100 1.4522 0.6049 0.3709 0.5488 0.5484 0.8976 0.9017 10.9 16 6 15.9643
0.6193 26.0 104 1.4616 0.6045 0.3701 0.5499 0.5495 0.8959 0.9032 11.1714 16 6 16.35
0.6247 27.0 108 1.4704 0.5993 0.3719 0.5515 0.5503 0.8949 0.9041 11.3429 17 7 16.6286
0.6062 28.0 112 1.4760 0.6017 0.3702 0.5537 0.5526 0.8949 0.903 11.2929 17 6 16.5143
0.5921 29.0 116 1.4816 0.5994 0.3734 0.5528 0.552 0.8959 0.9025 11.1429 17 6 16.3429
0.5859 30.0 120 1.4887 0.6027 0.3724 0.5523 0.5518 0.8956 0.9034 11.3357 17 7 16.5143
0.5911 31.0 124 1.4958 0.6065 0.3757 0.5523 0.5519 0.8971 0.9033 11.1857 17 6 16.3643
0.5936 32.0 128 1.5029 0.6008 0.3745 0.5508 0.5508 0.8973 0.9015 10.9714 16 6 16.1
0.584 33.0 132 1.5101 0.6087 0.3801 0.5582 0.5583 0.8969 0.9038 11.2214 16 6 16.4071
0.5741 34.0 136 1.5157 0.6054 0.3814 0.5575 0.5576 0.8961 0.9042 11.2643 16 7 16.4786
0.5793 35.0 140 1.5202 0.6079 0.3866 0.5621 0.5622 0.8968 0.9057 11.3214 16 7 16.5714
0.5803 36.0 144 1.5221 0.6081 0.3824 0.5601 0.5602 0.8966 0.9053 11.3357 16 7 16.6214
0.5719 37.0 148 1.5235 0.6025 0.3802 0.555 0.5542 0.898 0.9035 11.1357 16 7 16.3214
0.5567 38.0 152 1.5238 0.5987 0.3763 0.5524 0.5517 0.8974 0.9024 11.0357 16 7 16.2143
0.5535 39.0 156 1.5264 0.6023 0.3746 0.5547 0.5539 0.8977 0.9035 11.1357 16 7 16.3
0.5507 40.0 160 1.5315 0.6039 0.3757 0.5565 0.5559 0.8979 0.9045 11.2071 16 7 16.4143
0.5568 41.0 164 1.5389 0.6078 0.3819 0.5589 0.5579 0.8973 0.9045 11.4 17 7 16.5571
0.5659 42.0 168 1.5444 0.6037 0.3788 0.5567 0.5558 0.8959 0.9036 11.4286 17 7 16.5714
0.561 43.0 172 1.5475 0.5965 0.372 0.5494 0.548 0.8958 0.9024 11.3357 17 7 16.4929
0.5535 44.0 176 1.5493 0.597 0.3703 0.5495 0.5485 0.8967 0.9025 11.2214 17 7 16.3786
0.5542 45.0 180 1.5507 0.6001 0.3706 0.5529 0.5526 0.897 0.9034 11.2429 17 7 16.4214
0.542 46.0 184 1.5527 0.6001 0.3706 0.5529 0.5526 0.897 0.9034 11.2429 17 7 16.4214
0.5466 47.0 188 1.5539 0.6003 0.3702 0.5529 0.5526 0.8968 0.9033 11.2571 17 7 16.4357
0.5478 48.0 192 1.5550 0.5997 0.3699 0.5515 0.5508 0.8969 0.9029 11.2143 17 7 16.3857
0.5429 49.0 196 1.5552 0.5993 0.3696 0.551 0.5503 0.8968 0.9029 11.2357 17 7 16.4143
0.5443 50.0 200 1.5555 0.5993 0.3696 0.551 0.5503 0.8968 0.9029 11.2357 17 7 16.4143

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v6

Base model

google-t5/t5-small
Finetuned
(1669)
this model