text_shortening_model_v7

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4907
  • Rouge1: 0.5855
  • Rouge2: 0.3458
  • Rougel: 0.525
  • Rougelsum: 0.5248
  • Bert precision: 0.8932
  • Bert recall: 0.9014
  • Average word count: 11.6
  • Max word count: 18
  • Min word count: 6
  • Average token count: 16.8

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count
2.285 1.0 8 1.8416 0.5247 0.3056 0.4646 0.4648 0.8769 0.8826 11.2786 18 1 16.7643
1.9309 2.0 16 1.7082 0.5311 0.3091 0.4698 0.4696 0.8779 0.8859 11.6214 18 4 17.1
1.8124 3.0 24 1.6491 0.5348 0.3068 0.4768 0.4763 0.8845 0.8895 11.2071 18 5 16.3357
1.714 4.0 32 1.6132 0.5496 0.3135 0.4871 0.4856 0.8859 0.8931 11.3143 18 5 16.5429
1.6574 5.0 40 1.5831 0.5655 0.3305 0.5051 0.5044 0.887 0.8993 11.8571 17 5 17.2
1.5906 6.0 48 1.5574 0.5706 0.3303 0.5075 0.5071 0.8856 0.902 12.2714 17 6 17.7143
1.5538 7.0 56 1.5241 0.5745 0.3332 0.5096 0.5094 0.8871 0.9011 12.0429 17 5 17.4
1.4875 8.0 64 1.5150 0.5773 0.3353 0.5117 0.512 0.8862 0.9024 12.2 17 6 17.6
1.4466 9.0 72 1.4969 0.5781 0.3345 0.5092 0.5096 0.8881 0.9006 12.0643 17 6 17.3429
1.4166 10.0 80 1.4864 0.5752 0.3326 0.5085 0.5085 0.8887 0.8999 11.9357 17 6 17.2286
1.3887 11.0 88 1.4809 0.5738 0.3271 0.5049 0.5051 0.8862 0.9001 12.1429 17 6 17.4786
1.3321 12.0 96 1.4755 0.5811 0.337 0.5144 0.5145 0.8879 0.9017 12.2429 17 6 17.6286
1.3167 13.0 104 1.4635 0.5816 0.3355 0.5143 0.5137 0.8886 0.9015 12.15 17 6 17.5214
1.2763 14.0 112 1.4593 0.5817 0.3345 0.5141 0.5138 0.8882 0.9007 12.1071 17 6 17.3714
1.2584 15.0 120 1.4640 0.5851 0.337 0.5182 0.5181 0.8884 0.9016 12.15 17 6 17.4143
1.2266 16.0 128 1.4652 0.5777 0.3321 0.5124 0.5127 0.8873 0.9 12.0571 17 6 17.3071
1.2077 17.0 136 1.4627 0.5798 0.3326 0.5142 0.5147 0.8876 0.9002 12.0 17 6 17.2429
1.1881 18.0 144 1.4628 0.5784 0.3312 0.5121 0.5126 0.8866 0.8993 12.0429 17 6 17.3071
1.1721 19.0 152 1.4589 0.5754 0.3284 0.5105 0.5114 0.8874 0.8993 11.9571 17 6 17.2143
1.1419 20.0 160 1.4561 0.5748 0.3296 0.511 0.511 0.8873 0.8993 11.9786 17 6 17.2357
1.1299 21.0 168 1.4605 0.5813 0.3349 0.518 0.518 0.8876 0.9006 12.1357 18 6 17.35
1.1295 22.0 176 1.4605 0.5756 0.3292 0.512 0.5117 0.8874 0.8985 11.95 17 6 17.1714
1.1091 23.0 184 1.4609 0.5746 0.3277 0.5129 0.5129 0.8877 0.899 11.9571 17 6 17.1857
1.0963 24.0 192 1.4616 0.5715 0.3236 0.5101 0.5096 0.8868 0.8987 11.9571 17 6 17.25
1.0713 25.0 200 1.4590 0.5733 0.3264 0.5119 0.5117 0.8872 0.8992 11.9857 17 6 17.2286
1.0578 26.0 208 1.4569 0.577 0.3317 0.5139 0.5141 0.8888 0.8996 11.9071 17 6 17.1143
1.0416 27.0 216 1.4638 0.5761 0.3312 0.5145 0.5138 0.8883 0.8994 12.0071 18 6 17.2071
1.0398 28.0 224 1.4657 0.5784 0.3351 0.5149 0.515 0.8887 0.8992 11.9 18 6 17.0429
1.0286 29.0 232 1.4684 0.5776 0.335 0.5164 0.516 0.8889 0.8992 11.9429 18 6 17.1
1.0095 30.0 240 1.4734 0.5772 0.3381 0.5178 0.5177 0.8886 0.8989 11.9143 18 6 17.1214
1.0093 31.0 248 1.4737 0.5776 0.3374 0.5193 0.5188 0.889 0.8998 11.8714 18 6 17.1
0.9892 32.0 256 1.4707 0.5836 0.3469 0.5246 0.5251 0.8902 0.9005 11.7929 18 6 16.9786
0.9982 33.0 264 1.4734 0.5832 0.3444 0.5249 0.5248 0.89 0.9004 11.8571 18 6 17.0929
0.983 34.0 272 1.4767 0.5804 0.3427 0.5224 0.5221 0.8899 0.8997 11.7286 18 6 17.0071
0.962 35.0 280 1.4790 0.5805 0.3402 0.5215 0.5214 0.8901 0.8995 11.6929 18 6 16.9643
0.9575 36.0 288 1.4817 0.5817 0.3411 0.5209 0.5214 0.8906 0.9001 11.6143 18 6 16.8714
0.948 37.0 296 1.4842 0.5823 0.3421 0.522 0.5224 0.891 0.8999 11.6429 18 6 16.8714
0.9448 38.0 304 1.4843 0.5812 0.3426 0.5223 0.5223 0.891 0.8999 11.5786 18 6 16.8143
0.9415 39.0 312 1.4860 0.5802 0.3419 0.5203 0.52 0.8909 0.8992 11.5357 18 6 16.7786
0.9536 40.0 320 1.4868 0.5801 0.3382 0.5198 0.5195 0.8906 0.8982 11.5429 18 6 16.7286
0.9249 41.0 328 1.4891 0.5804 0.3386 0.5203 0.5201 0.8917 0.8994 11.5929 18 6 16.7857
0.9287 42.0 336 1.4904 0.5767 0.3397 0.5181 0.5181 0.8906 0.8994 11.6429 18 6 16.8929
0.94 43.0 344 1.4923 0.5824 0.3431 0.5227 0.5227 0.8918 0.9011 11.6429 18 6 16.8929
0.9118 44.0 352 1.4921 0.5835 0.3442 0.5238 0.524 0.8924 0.9013 11.6286 18 6 16.8429
0.9343 45.0 360 1.4907 0.5824 0.3438 0.5225 0.5228 0.8921 0.9011 11.6286 18 6 16.8571
0.9133 46.0 368 1.4902 0.584 0.3453 0.5236 0.5236 0.893 0.9013 11.6 18 6 16.8071
0.9162 47.0 376 1.4903 0.584 0.3453 0.5236 0.5236 0.8929 0.9012 11.5929 18 6 16.8071
0.9088 48.0 384 1.4904 0.5848 0.3454 0.5243 0.5242 0.8931 0.9013 11.6 18 6 16.8
0.9225 49.0 392 1.4908 0.5855 0.3458 0.525 0.5248 0.8932 0.9014 11.6 18 6 16.8
0.9215 50.0 400 1.4907 0.5855 0.3458 0.525 0.5248 0.8932 0.9014 11.6 18 6 16.8

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v7

Base model

google-t5/t5-small
Finetuned
(1672)
this model