license: apache-2.0 | |
tags: | |
- generated_from_keras_callback | |
base_model: hfl/chinese-roberta-wwm-ext | |
model-index: | |
- name: celera_relevance | |
results: [] | |
<!-- This model card has been generated automatically according to the information Keras had access to. You should | |
probably proofread and complete it, then remove this comment. --> | |
# celera_relevance | |
This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on an unknown dataset. | |
It achieves the following results on the evaluation set: | |
- Train Loss: 0.3072 | |
- Train Sparse Categorical Accuracy: 0.8813 | |
- Validation Loss: 0.4371 | |
- Validation Sparse Categorical Accuracy: 0.8295 | |
- Epoch: 2 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} | |
- training_precision: float32 | |
### Training results | |
| Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | | |
|:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | |
| 0.4060 | 0.8274 | 0.3665 | 0.8440 | 0 | | |
| 0.3388 | 0.8594 | 0.3639 | 0.8585 | 1 | | |
| 0.3072 | 0.8813 | 0.4371 | 0.8295 | 2 | | |
### Framework versions | |
- Transformers 4.16.0 | |
- TensorFlow 2.7.0 | |
- Datasets 1.18.1 | |
- Tokenizers 0.11.0 | |