Llama3-ChatQA-1.5-8B-IMat-GGUF

Llama.cpp imatrix quantization of nvidia/Llama3-ChatQA-1.5-8B

Original Model: nvidia/Llama3-ChatQA-1.5-8B
Original dtype: FP16 (float16)
Quantized by: llama.cpp b3003
IMatrix dataset: here


Files

IMatrix

Status: βœ… Available
Link: here

Common Quants

Filename Quant type File Size Status Uses IMatrix Is Split
Llama3-ChatQA-1.5-8B.Q8_0.gguf Q8_0 8.54GB βœ… Available βšͺ No πŸ“¦ No
Llama3-ChatQA-1.5-8B.Q6_K.gguf Q6_K 6.60GB βœ… Available βšͺ No πŸ“¦ No
Llama3-ChatQA-1.5-8B.Q4_K.gguf Q4_K 4.92GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.Q3_K.gguf Q3_K 4.02GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.Q2_K.gguf Q2_K 3.18GB βœ… Available 🟒 Yes πŸ“¦ No

All Quants

Filename Quant type File Size Status Uses IMatrix Is Split
Llama3-ChatQA-1.5-8B.FP16.gguf F16 16.07GB βœ… Available βšͺ No πŸ“¦ No
Llama3-ChatQA-1.5-8B.Q5_K.gguf Q5_K 5.73GB βœ… Available βšͺ No πŸ“¦ No
Llama3-ChatQA-1.5-8B.Q5_K_S.gguf Q5_K_S 5.60GB βœ… Available βšͺ No πŸ“¦ No
Llama3-ChatQA-1.5-8B.Q4_K_S.gguf Q4_K_S 4.69GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.Q3_K_L.gguf Q3_K_L 4.32GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.Q3_K_S.gguf Q3_K_S 3.66GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.Q2_K_S.gguf Q2_K_S 2.99GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.IQ4_NL.gguf IQ4_NL 4.68GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.IQ4_XS.gguf IQ4_XS 4.45GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.IQ3_M.gguf IQ3_M 3.78GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.IQ3_S.gguf IQ3_S 3.68GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.IQ3_XS.gguf IQ3_XS 3.52GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.IQ3_XXS.gguf IQ3_XXS 3.27GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.IQ2_M.gguf IQ2_M 2.95GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.IQ2_S.gguf IQ2_S 2.76GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.IQ2_XS.gguf IQ2_XS 2.61GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.IQ2_XXS.gguf IQ2_XXS 2.40GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.IQ1_M.gguf IQ1_M 2.16GB βœ… Available 🟒 Yes πŸ“¦ No
Llama3-ChatQA-1.5-8B.IQ1_S.gguf IQ1_S 2.02GB βœ… Available 🟒 Yes πŸ“¦ No

Downloading using huggingface-cli

If you do not have hugginface-cli installed:

pip install -U "huggingface_hub[cli]"

Download the specific file you want:

huggingface-cli download legraphista/Llama3-ChatQA-1.5-8B-IMat-GGUF --include "Llama3-ChatQA-1.5-8B.Q8_0.gguf" --local-dir ./

If the model file is big, it has been split into multiple files. In order to download them all to a local folder, run:

huggingface-cli download legraphista/Llama3-ChatQA-1.5-8B-IMat-GGUF --include "Llama3-ChatQA-1.5-8B.Q8_0/*" --local-dir Llama3-ChatQA-1.5-8B.Q8_0
# see FAQ for merging GGUF's

Inference

Simple chat template

<|begin_of_text|>System: This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context.

User: Can you provide ways to eat combinations of bananas and dragonfruits?

Assistant: Sure! Here are some ways to eat bananas and dragonfruits together:
 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey.
 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey.

User: What about solving an 2x + 3 = 7 equation?

Assistant:

Llama.cpp

llama.cpp/main -m Llama3-ChatQA-1.5-8B.Q8_0.gguf --color -i -p "prompt here (according to the chat template)"

FAQ

Why is the IMatrix not applied everywhere?

According to this investigation, it appears that lower quantizations are the only ones that benefit from the imatrix input (as per hellaswag results).

How do I merge a split GGUF?

  1. Make sure you have gguf-split available
  2. Locate your GGUF chunks folder (ex: Llama3-ChatQA-1.5-8B.Q8_0)
  3. Run gguf-split --merge Llama3-ChatQA-1.5-8B.Q8_0/Llama3-ChatQA-1.5-8B.Q8_0-00001-of-XXXXX.gguf Llama3-ChatQA-1.5-8B.Q8_0.gguf
    • Make sure to point gguf-split to the first chunk of the split.

Got a suggestion? Ping me @legraphista!

Downloads last month
163
GGUF
Model size
8.03B params
Architecture
llama

1-bit

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for legraphista/Llama3-ChatQA-1.5-8B-IMat-GGUF

Quantized
(21)
this model