lesso01's picture
End of training
176f778 verified
metadata
library_name: peft
license: mit
base_model: EleutherAI/gpt-neo-125m
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: 64853b4e-5a19-474d-924f-9119aa243535
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/gpt-neo-125m
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 013b7492fb8e4a6f_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/013b7492fb8e4a6f_train_data.json
  type:
    field_input: facts
    field_instruction: decomposition
    field_output: question
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso01/64853b4e-5a19-474d-924f-9119aa243535
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 30
micro_batch_size: 4
mlflow_experiment_name: /tmp/013b7492fb8e4a6f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c92f0697-88ec-4fd2-b840-070596ceaa27
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c92f0697-88ec-4fd2-b840-070596ceaa27
warmup_steps: 5
weight_decay: 0.01
xformers_attention: false

64853b4e-5a19-474d-924f-9119aa243535

This model is a fine-tuned version of EleutherAI/gpt-neo-125m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9203

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • training_steps: 30

Training results

Training Loss Epoch Step Validation Loss
8.6044 0.0040 1 3.9320
6.9561 0.0161 4 3.9312
6.8751 0.0322 8 3.9275
8.3004 0.0483 12 3.9248
7.3194 0.0644 16 3.9252
7.6949 0.0805 20 3.9199
7.0114 0.0966 24 3.9172
7.8008 0.1127 28 3.9203

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1