Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
datasets:
- data_files:
  - c16519f6fd18723b_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/c16519f6fd18723b_train_data.json
  type:
    field_instruction: instruction
    field_output: source_code
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso02/c8b2dc06-062a-44aa-8973-de7a3461f8c0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/c16519f6fd18723b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c8b2dc06-062a-44aa-8973-de7a3461f8c0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c8b2dc06-062a-44aa-8973-de7a3461f8c0
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

c8b2dc06-062a-44aa-8973-de7a3461f8c0

This model is a fine-tuned version of HuggingFaceM4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3658

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
10.3759 0.0029 1 10.3760
10.3778 0.0261 9 10.3755
10.3757 0.0522 18 10.3743
10.3743 0.0784 27 10.3730
10.372 0.1045 36 10.3716
10.3726 0.1306 45 10.3701
10.3706 0.1567 54 10.3687
10.3683 0.1829 63 10.3675
10.3682 0.2090 72 10.3666
10.3681 0.2351 81 10.3661
10.364 0.2612 90 10.3659
10.3678 0.2874 99 10.3658

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lesso02/c8b2dc06-062a-44aa-8973-de7a3461f8c0

Adapter
(130)
this model