See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: katuni4ka/tiny-random-olmo-hf
bf16: true
chat_template: llama3
datasets:
- data_files:
- 3c0585e8af3719dd_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3c0585e8af3719dd_train_data.json
type:
field_input: domain
field_instruction: question
field_output: query
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso05/dfb1d3bc-d47b-4673-abe6-8c8b1e9213d7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/3c0585e8af3719dd_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6143de1f-3858-466a-aa4e-fe1f166debc4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6143de1f-3858-466a-aa4e-fe1f166debc4
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
dfb1d3bc-d47b-4673-abe6-8c8b1e9213d7
This model is a fine-tuned version of katuni4ka/tiny-random-olmo-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.8204
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.8245 | 0.0016 | 1 | 10.8382 |
10.8452 | 0.0147 | 9 | 10.8371 |
10.8304 | 0.0294 | 18 | 10.8339 |
10.8349 | 0.0441 | 27 | 10.8310 |
10.8361 | 0.0588 | 36 | 10.8284 |
10.8207 | 0.0735 | 45 | 10.8259 |
10.8257 | 0.0882 | 54 | 10.8238 |
10.8152 | 0.1029 | 63 | 10.8223 |
10.8379 | 0.1176 | 72 | 10.8213 |
10.8109 | 0.1322 | 81 | 10.8207 |
10.8245 | 0.1469 | 90 | 10.8205 |
10.8256 | 0.1616 | 99 | 10.8204 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 11
Model tree for lesso05/dfb1d3bc-d47b-4673-abe6-8c8b1e9213d7
Base model
katuni4ka/tiny-random-olmo-hf