Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: katuni4ka/tiny-random-olmo-hf
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 3c0585e8af3719dd_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/3c0585e8af3719dd_train_data.json
  type:
    field_input: domain
    field_instruction: question
    field_output: query
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso05/dfb1d3bc-d47b-4673-abe6-8c8b1e9213d7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/3c0585e8af3719dd_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6143de1f-3858-466a-aa4e-fe1f166debc4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6143de1f-3858-466a-aa4e-fe1f166debc4
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

dfb1d3bc-d47b-4673-abe6-8c8b1e9213d7

This model is a fine-tuned version of katuni4ka/tiny-random-olmo-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.8204

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
10.8245 0.0016 1 10.8382
10.8452 0.0147 9 10.8371
10.8304 0.0294 18 10.8339
10.8349 0.0441 27 10.8310
10.8361 0.0588 36 10.8284
10.8207 0.0735 45 10.8259
10.8257 0.0882 54 10.8238
10.8152 0.1029 63 10.8223
10.8379 0.1176 72 10.8213
10.8109 0.1322 81 10.8207
10.8245 0.1469 90 10.8205
10.8256 0.1616 99 10.8204

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
11
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lesso05/dfb1d3bc-d47b-4673-abe6-8c8b1e9213d7

Adapter
(135)
this model