Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: beomi/polyglot-ko-12.8b-safetensors
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 08be9849d87adf76_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/08be9849d87adf76_train_data.json
  type:
    field_input: language
    field_instruction: text
    field_output: rating_list
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso06/94797c98-d8ba-4067-81cb-1908126d5327
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/08be9849d87adf76_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ede91a40-9d57-4d90-bcd1-4527d47b06a5
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ede91a40-9d57-4d90-bcd1-4527d47b06a5
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

94797c98-d8ba-4067-81cb-1908126d5327

This model is a fine-tuned version of beomi/polyglot-ko-12.8b-safetensors on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6742

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 25

Training results

Training Loss Epoch Step Validation Loss
6.9729 0.0011 1 1.7519
6.7127 0.0053 5 1.6791
4.7409 0.0106 10 1.1312
5.4727 0.0159 15 0.7406
2.6024 0.0212 20 0.6798
2.5128 0.0265 25 0.6742

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lesso06/94797c98-d8ba-4067-81cb-1908126d5327

Adapter
(105)
this model