Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0
bf16: true
chat_template: llama3
datasets:
- data_files:
  - d21ca320eda5dac5_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d21ca320eda5dac5_train_data.json
  type:
    field_instruction: instruction
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso11/1dafb2d8-47c3-49fd-b9a6-6099e239caca
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/d21ca320eda5dac5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 23c3f37b-5d4c-4783-adf7-f3d13ea8fc4e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 23c3f37b-5d4c-4783-adf7-f3d13ea8fc4e
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

1dafb2d8-47c3-49fd-b9a6-6099e239caca

This model is a fine-tuned version of WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2090

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
1.4273 0.0003 1 1.4150
1.4122 0.0016 5 1.4043
1.4063 0.0033 10 1.3318
1.2735 0.0049 15 1.2826
1.1978 0.0065 20 1.2525
1.3018 0.0082 25 1.2346
1.2025 0.0098 30 1.2231
1.3261 0.0114 35 1.2160
1.3134 0.0131 40 1.2113
1.0846 0.0147 45 1.2095
1.2147 0.0163 50 1.2090

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for lesso11/1dafb2d8-47c3-49fd-b9a6-6099e239caca

Adapter
(296)
this model