YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

How to use this model on Python

You can use a Google Colab notebook, please ensure you install

!pip install -q bitsandbytes datasets accelerate loralib
!pip install -q git+https://github.com/huggingface/peft.git git+https://github.com/huggingface/transformers.git

You can then copy and paste this into a cell, or use as a standalone Python script.

import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
from IPython.display import display, Markdown

def make_inference(topic):
  batch = tokenizer(f"### INSTRUCTION\nBelow summary for a blog post, please write a social media post\
  \n\n### Topic:\n{topic}\n### Social media post:\n", return_tensors='pt')

  with torch.cuda.amp.autocast():
    output_tokens = model.generate(**batch, max_new_tokens=200)

  display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True))))

if __name__=="__main__":

  # Set up user name and model name
  hf_username = "lgfunderburk"
  model_name = 'tech-social-media-posts'
  peft_model_id = f"{hf_username}/{model_name}"

  # Apply PETF configuration, setup model and autotokenizer
  config = PeftConfig.from_pretrained(peft_model_id)
  model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map='auto')
  tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
  
  # Load the Lora model
  model = PeftModel.from_pretrained(model, peft_model_id)

  # Summary to generate a social media post about
  topic = "The blog post demonstrates how to use JupySQL and DuckDB to query CSV files with SQL in a Jupyter notebook. \
          It covers installation, setup, querying, and converting queries to DataFrame. \
          Additionally, the post shows how to register SQLite user-defined functions (UDF), \
          connect to a SQLite database with spaces, switch connections between databases, and connect to existing engines. \
          It also provides tips for using JupySQL in Databricks, ignoring deprecation warnings, and hiding connection strings."
  

  # Generate social media post
  make_inference(topic)

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.