YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
How to use this model on Python
You can use a Google Colab notebook, please ensure you install
!pip install -q bitsandbytes datasets accelerate loralib
!pip install -q git+https://github.com/huggingface/peft.git git+https://github.com/huggingface/transformers.git
You can then copy and paste this into a cell, or use as a standalone Python script.
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
from IPython.display import display, Markdown
def make_inference(topic):
batch = tokenizer(f"### INSTRUCTION\nBelow summary for a blog post, please write a social media post\
\n\n### Topic:\n{topic}\n### Social media post:\n", return_tensors='pt')
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=200)
display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True))))
if __name__=="__main__":
# Set up user name and model name
hf_username = "lgfunderburk"
model_name = 'tech-social-media-posts'
peft_model_id = f"{hf_username}/{model_name}"
# Apply PETF configuration, setup model and autotokenizer
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
# Summary to generate a social media post about
topic = "The blog post demonstrates how to use JupySQL and DuckDB to query CSV files with SQL in a Jupyter notebook. \
It covers installation, setup, querying, and converting queries to DataFrame. \
Additionally, the post shows how to register SQLite user-defined functions (UDF), \
connect to a SQLite database with spaces, switch connections between databases, and connect to existing engines. \
It also provides tips for using JupySQL in Databricks, ignoring deprecation warnings, and hiding connection strings."
# Generate social media post
make_inference(topic)