lgfunderburk commited on
Commit
8b9bde0
1 Parent(s): 0ec019c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # How to use this
2
+
3
+ ```
4
+ import torch
5
+ from peft import PeftModel, PeftConfig
6
+ from transformers import AutoModelForCausalLM, AutoTokenizer
7
+ from IPython.display import display, Markdown
8
+
9
+ def make_inference(topic):
10
+ batch = tokenizer(f"### INSTRUCTION\nBelow summary for a blog post, please write a social media post\
11
+ \n\n### Topic:\n{topic}\n### Social media post:\n", return_tensors='pt')
12
+
13
+ with torch.cuda.amp.autocast():
14
+ output_tokens = model.generate(**batch, max_new_tokens=200)
15
+
16
+ display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True))))
17
+
18
+ if __name__=="__main__":
19
+
20
+ # Set up user name and model name
21
+ hf_username = "lgfunderburk"
22
+ model_name = 'tech-social-media-posts'
23
+ peft_model_id = f"{hf_username}/{model_name}"
24
+
25
+ # Apply PETF configuration, setup model and autotokenizer
26
+ config = PeftConfig.from_pretrained(peft_model_id)
27
+ model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map='auto')
28
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
29
+
30
+ # Load the Lora model
31
+ model = PeftModel.from_pretrained(model, peft_model_id)
32
+
33
+ # Summary to generate a social media post about
34
+ topic = "The blog post demonstrates how to use JupySQL and DuckDB to query CSV files with SQL in a Jupyter notebook. \
35
+ It covers installation, setup, querying, and converting queries to DataFrame. \
36
+ Additionally, the post shows how to register SQLite user-defined functions (UDF), \
37
+ connect to a SQLite database with spaces, switch connections between databases, and connect to existing engines. \
38
+ It also provides tips for using JupySQL in Databricks, ignoring deprecation warnings, and hiding connection strings."
39
+
40
+
41
+ # Generate social media post
42
+ make_inference(topic)
43
+
44
+
45
+ ```