metadata
{}
Tradutor
A translation system from English to European Portuguese.
Usage
Using the pipeline
from transformers import pipeline
translator = pipeline("text-generation", model="liaad/Tradutor")
text = "Hello, how are you?"
chat = [
{
"role": "system",
"content": "You are a translator from English to European Portuguese",
},
{
"role": "user",
"content": f"Translate this text from English to European Portuguese: {text}",
},
]
translated_text = translator(
chat,
max_length=1024,
pad_token_id=translator.model.config.eos_token_id # Not necessary. Just to avoid warning.
)
print(translated_text[-1]["generated_text"][-1]["content"])
Using model and tokenizer
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "liaad/Tradutor"
max_length = 1024
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
)
text = "Hello, how are you?"
chat = [
{
"role": "system",
"content": "You are a translator from English to European Portuguese",
},
{
"role": "user",
"content": f"Translate this text from English to European Portuguese: {text}",
},
]
input_ids = tokenizer.apply_chat_template(
chat,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
max_length=max_length,
)
output_ids = model.generate(
input_ids,
max_length=max_length,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id,
)
generated_ids = output_ids[0, input_ids.shape[1] :]
translated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
print(translated_text.strip())