File size: 6,867 Bytes
3c8802f
a5d8943
3c8802f
 
 
 
 
 
 
 
 
 
 
 
a5d8943
3c8802f
a5d8943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c8802f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93970f5
 
3c8802f
 
 
93970f5
3c8802f
 
 
a5d8943
 
 
3c8802f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: lilyyellow/my_awesome_ner-token_classification_v1.0.7-6
tags:
- generated_from_trainer
model-index:
- name: my_awesome_ner-token_classification_v1.0.7-6
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_ner-token_classification_v1.0.7-6

This model is a fine-tuned version of [lilyyellow/my_awesome_ner-token_classification_v1.0.7-6](https://huggingface.co/lilyyellow/my_awesome_ner-token_classification_v1.0.7-6) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3464
- Age: {'precision': 0.9153846153846154, 'recall': 0.8880597014925373, 'f1': 0.9015151515151514, 'number': 134}
- Datetime: {'precision': 0.6675824175824175, 'recall': 0.7386018237082067, 'f1': 0.7012987012987013, 'number': 987}
- Disease: {'precision': 0.6712328767123288, 'recall': 0.7480916030534351, 'f1': 0.7075812274368231, 'number': 262}
- Event: {'precision': 0.28023598820059, 'recall': 0.3392857142857143, 'f1': 0.30694668820678517, 'number': 280}
- Gender: {'precision': 0.6947368421052632, 'recall': 0.7586206896551724, 'f1': 0.7252747252747253, 'number': 87}
- Law: {'precision': 0.5664556962025317, 'recall': 0.7019607843137254, 'f1': 0.626970227670753, 'number': 255}
- Location: {'precision': 0.6860587002096437, 'recall': 0.7292479108635097, 'f1': 0.7069943289224953, 'number': 1795}
- Organization: {'precision': 0.6145833333333334, 'recall': 0.7019167217448777, 'f1': 0.6553532860228325, 'number': 1513}
- Person: {'precision': 0.6846725185685347, 'recall': 0.7294964028776978, 'f1': 0.7063740856844305, 'number': 1390}
- Quantity: {'precision': 0.5110782865583456, 'recall': 0.6113074204946997, 'f1': 0.5567176186645212, 'number': 566}
- Role: {'precision': 0.4672897196261682, 'recall': 0.5484460694698354, 'f1': 0.5046257359125315, 'number': 547}
- Transportation: {'precision': 0.46, 'recall': 0.6, 'f1': 0.5207547169811321, 'number': 115}
- Overall Precision: 0.6197
- Overall Recall: 0.6915
- Overall F1: 0.6536
- Overall Accuracy: 0.8962

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Age                                                                                                      | Datetime                                                                                                 | Disease                                                                                                  | Event                                                                                                   | Gender                                                                                                  | Law                                                                                                     | Location                                                                                                  | Organization                                                                                              | Person                                                                                                    | Quantity                                                                                                 | Role                                                                                                     | Transportation                                                              | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.2089        | 1.9965 | 1156 | 0.3464          | {'precision': 0.9153846153846154, 'recall': 0.8880597014925373, 'f1': 0.9015151515151514, 'number': 134} | {'precision': 0.6675824175824175, 'recall': 0.7386018237082067, 'f1': 0.7012987012987013, 'number': 987} | {'precision': 0.6712328767123288, 'recall': 0.7480916030534351, 'f1': 0.7075812274368231, 'number': 262} | {'precision': 0.28023598820059, 'recall': 0.3392857142857143, 'f1': 0.30694668820678517, 'number': 280} | {'precision': 0.6947368421052632, 'recall': 0.7586206896551724, 'f1': 0.7252747252747253, 'number': 87} | {'precision': 0.5664556962025317, 'recall': 0.7019607843137254, 'f1': 0.626970227670753, 'number': 255} | {'precision': 0.6860587002096437, 'recall': 0.7292479108635097, 'f1': 0.7069943289224953, 'number': 1795} | {'precision': 0.6145833333333334, 'recall': 0.7019167217448777, 'f1': 0.6553532860228325, 'number': 1513} | {'precision': 0.6846725185685347, 'recall': 0.7294964028776978, 'f1': 0.7063740856844305, 'number': 1390} | {'precision': 0.5110782865583456, 'recall': 0.6113074204946997, 'f1': 0.5567176186645212, 'number': 566} | {'precision': 0.4672897196261682, 'recall': 0.5484460694698354, 'f1': 0.5046257359125315, 'number': 547} | {'precision': 0.46, 'recall': 0.6, 'f1': 0.5207547169811321, 'number': 115} | 0.6197            | 0.6915         | 0.6536     | 0.8962           |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1