limin(gate)
Upload folder using huggingface_hub
1f1b14f verified
|
raw
history blame
1.91 kB
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - starsnatched/MemGPT
  - 222gate/Ingot-7b-slerp-7-forged-mirror
  - starsnatched/MemGPT
base_model:
  - starsnatched/MemGPT
  - 222gate/Ingot-7b-slerp-7-forged-mirror
  - starsnatched/MemGPT

Mem-Beagle-7b-slerp-v3

Mem-Beagle-7b-slerp-v3 is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: starsnatched/MemGPT
    parameters:
      density: [1, 0.7, 0.1] # density gradient
      weight: 1.0
  - model: 222gate/Ingot-7b-slerp-7-forged-mirror
    parameters:
      density: 0.5
      weight: [0, 0.3, 0.7, 1] # weight gradient
  - model: starsnatched/MemGPT
    parameters:
      density: 0.33
      weight:
        - filter: mlp
          value: 0.5
        - value: 0
merge_method: ties
base_model: liminerity/Mem-Beagle-7b-slerp-v2
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "liminerity/Mem-Beagle-7b-slerp-v3"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])