|
--- |
|
license: apache-2.0 |
|
inference: false |
|
--- |
|
|
|
# SLIM-QA-GEN-PHI-3 |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
**slim-qa-gen-phi-3** implements a specialized function-calling question and answer generation from a context passage, with output in the form of a python dictionary, e.g., |
|
|
|
`{'question': ['What were earnings per share in the most recent quarter?'], 'answer': ['$2.39'] } |
|
|
|
This model is finetuned on top of phi-3-mini-4k-instruct base. |
|
|
|
For fast inference use, we would recommend the 'quantized tool' version, e.g., [**'slim-qa-gen-phi-3-tool'**](https://huggingface.co/llmware/slim-qa-gen-phi-3-tool). |
|
|
|
|
|
## Prompt format: |
|
|
|
`function = "generate"` |
|
`params = "{'question, answer', 'boolean', or 'multiple choice'}"` |
|
`prompt = "<human> " + {text} + "\n" + ` |
|
`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"` |
|
|
|
|
|
<details> |
|
<summary>Transformers Script </summary> |
|
|
|
model = AutoModelForCausalLM.from_pretrained("llmware/slim-qa-gen-phi-3") |
|
tokenizer = AutoTokenizer.from_pretrained("llmware/slim-qa-gen-phi-3") |
|
|
|
function = "generate" |
|
params = "boolean" |
|
|
|
text = "Tesla stock declined yesterday 8% in premarket trading after a poorly-received event in San Francisco yesterday, in which the company indicated a likely shortfall in revenue." |
|
|
|
prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:" |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
start_of_input = len(inputs.input_ids[0]) |
|
|
|
outputs = model.generate( |
|
inputs.input_ids.to('cpu'), |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.eos_token_id, |
|
do_sample=True, |
|
temperature=0.7, |
|
max_new_tokens=200 |
|
) |
|
|
|
output_only = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True) |
|
|
|
print("output only: ", output_only) |
|
|
|
[OUTPUT]: {'llm_response': {'question': ['Did Telsa stock decline more than 5% yesterday?'], 'answer':['yes'] } } |
|
|
|
# here's the fun part |
|
try: |
|
output_only = ast.literal_eval(llm_string_output) |
|
print("success - converted to python dictionary automatically") |
|
except: |
|
print("fail - could not convert to python dictionary automatically - ", llm_string_output) |
|
|
|
</details> |
|
|
|
<details> |
|
|
|
|
|
|
|
|
|
<summary>Using as Function Call in LLMWare</summary> |
|
|
|
from llmware.models import ModelCatalog |
|
slim_model = ModelCatalog().load_model("llmware/slim-qa-gen-phi-3", sample=True, temperature=0.5) |
|
response = slim_model.function_call(text,params=["boolean"], function="generate") |
|
|
|
print("llmware - llm_response: ", response) |
|
|
|
</details> |
|
|
|
|
|
## Model Card Contact |
|
|
|
Darren Oberst & llmware team |
|
|
|
[Join us on Discord](https://discord.gg/MhZn5Nc39h) |