An LLM for Chinese Information Extraction.
基于Baichuan-7B,使用8张A800进行了全参数SFT。目的是使用一个强基座模型复现zju cama
并没有跑Eval,欢迎提供!
训练用的Codebase是来自于shibing624大佬
使用的Bash如下
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc_per_node 8 ../supervised_finetuning.py \
--model_type baichuan \
--model_name_or_path /data/llm/models/Pretrained/Baichuan-7B/ \
--train_file_dir ../data/finetune/1124_IELLM/ \
--per_device_train_batch_size 8 \
--do_train \
--use_peft False \
--num_train_epochs 3 \
--learning_rate 2e-5 \
--warmup_ratio 0.03 \
--weight_decay 0. \
--fp16 \
--logging_strategy steps \
--logging_steps 10 \
--save_strategy epoch \
--save_total_limit 5 \
--gradient_accumulation_steps 1 \
--preprocessing_num_workers 8 \
--output_dir ../results/20231124_IELLM \
--overwrite_output_dir \
--ddp_timeout 30000 \
--logging_first_step True \
--torch_dtype float16 \
--device_map auto \
--report_to tensorboard \
--ddp_find_unused_parameters False \
--gradient_checkpointing True \
--cache_dir ./cache \
--model_max_length 2048 \
--deepspeed ../deepspeed_zero_stage2_config.json \
--template_name baichuan \
--flash_attn
***** train metrics *****
epoch = 3.0
train_loss = 0.1012
train_runtime = 1 day, 14:16:59.20
train_samples = 376031
train_samples_per_second = 8.185
train_steps_per_second = 0.128
测试结果:
- Downloads last month
- 2
Inference API (serverless) does not yet support model repos that contain custom code.