Intro

image/png

GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoders (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.

This particular version utilize bi-encoder architecture, where textual encoder is team-lucid/DeBERTa v3 xlarge and entity label encoder is sentence transformer - BAAI/bge-m3.

Such architecture brings several advantages over uni-encoder GLiNER:

  • An unlimited amount of entities can be recognized at a single time;
  • Faster inference if entity embeddings are preprocessed;
  • Better generalization to unseen entities;

However, it has some drawbacks such as a lack of inter-label interactions that make it hard for the model to disambiguate semantically similar but contextually different entities.


Installation & Usage

Install or update the gliner package:

pip install gliner>=0.2.16
pip install python-mecab-ko

Once you've downloaded the GLiNER library, you can import the GLiNER class. You can then load this model using GLiNER.from_pretrained and predict entities with predict_entities.

from gliner import GLiNER

model = GLiNER.from_pretrained("lots-o/gliner-bi-ko-xlarge-v1")

text = """ํฌ๋ฆฌ์Šคํ† ํผ ๋†€๋ž€(Christopher Nolan) ์€ ์˜๊ตญ์˜ ์˜ํ™” ๊ฐ๋…, ๊ฐ๋ณธ๊ฐ€, ์˜ํ™” ํ”„๋กœ๋“€์„œ์ด๋‹ค. ๊ทธ์˜ ๋Œ€ํ‘œ์ž‘์œผ๋กœ๋Š” 2008๋…„ ๊ฐœ๋ด‰ํ•œ ใ€Š๋‹คํฌ ๋‚˜์ดํŠธใ€‹ ์‹œ๋ฆฌ์ฆˆ๊ฐ€ ์žˆ์œผ๋ฉฐ, ํŠนํžˆ ใ€Š๋‹คํฌ ๋‚˜์ดํŠธใ€‹(2008)์˜ ๊ฐ๋…์œผ๋กœ ๊ฐ€์žฅ ์œ ๋ช…ํ•˜๋‹ค. ์ด ์˜ํ™”๋Š” ๋ฐฐํŠธ๋งจ ์บ๋ฆญํ„ฐ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•œ ์Šˆํผํžˆ์–ด๋กœ ์˜ํ™”๋กœ, ํžˆ์Šค ๋ ˆ์ €์˜ ์กฐ์ปค ์—ญํ• ์ด ํฐ ์ธ๊ธฐ๋ฅผ ๋Œ์—ˆ๋‹ค. ๋˜ํ•œ, 2010๋…„์— ๊ฐœ๋ด‰ํ•œ ใ€Š์ธ์…‰์…˜ใ€‹(2010)์€ ๋ณต์žกํ•œ ์‹œ๊ฐ„๊ณผ ๊ฟˆ์˜ ๊ฐœ๋…์„ ๋‹ค๋ฃฌ SF ์˜ํ™”๋กœ, ์˜ํ™” ์ œ์ž‘ ๋ฐฉ์‹๊ณผ ์Šคํ† ๋ฆฌ ์ „๊ฐœ์—์„œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ์„ ์„ ๋ณด์˜€๋‹ค. ํฌ๋ฆฌ์Šคํ† ํผ ๋†€๋ž€์€ ์‹œ๊ฐ„ ์—ฌํ–‰๊ณผ ๋‹ค์ฐจ์›์  ์ด์•ผ๊ธฐ๋ฅผ ํƒ๊ตฌํ•˜๋Š” ์˜ํ™”๋“ค์„ ํ†ตํ•ด ํ˜„๋Œ€ ์˜ํ™”๊ณ„์—์„œ ์ค‘์š”ํ•œ ๊ฐ๋…์œผ๋กœ ์ž๋ฆฌ๋งค๊น€ํ–ˆ๋‹ค.
"""

labels = [
    "์˜ํ™”/์†Œ์„ค ์ž‘ํ’ˆ๋ช…",
    "์‚ฌ๋žŒ ์ด๋ฆ„",
    "์บ๋ฆญํ„ฐ ์ด๋ฆ„",
    "์ง์—…๋ช…",
    "๋‚ ์งœ_์—ฐ(๋…„)",
    "๋‚ ์งœ_์ผ",
    "๋‚ ์งœ_๋‹ฌ(์›”)",
    "๊ตญ๊ฐ€"
]

entities = model.predict_entities(text, labels, threshold=0.2)

for entity in entities:
    print(entity["text"], "=>", entity["label"])
ํฌ๋ฆฌ์Šคํ† ํผ ๋†€๋ž€ => ์‚ฌ๋žŒ ์ด๋ฆ„
Christopher Nolan => ์‚ฌ๋žŒ ์ด๋ฆ„
์˜๊ตญ => ๊ตญ๊ฐ€
์˜ํ™” ๊ฐ๋… => ์ง์—…๋ช…
๊ฐ๋ณธ๊ฐ€ => ์ง์—…๋ช…
์˜ํ™” ํ”„๋กœ๋“€์„œ => ์ง์—…๋ช…
2008๋…„ => ๋‚ ์งœ_์—ฐ(๋…„)
๋‹คํฌ ๋‚˜์ดํŠธ => ์˜ํ™”/์†Œ์„ค ์ž‘ํ’ˆ๋ช…
๋‹คํฌ ๋‚˜์ดํŠธ => ์˜ํ™”/์†Œ์„ค ์ž‘ํ’ˆ๋ช…
2008 => ๋‚ ์งœ_์—ฐ(๋…„)
๊ฐ๋… => ์ง์—…๋ช…
๋ฐฐํŠธ๋งจ => ์บ๋ฆญํ„ฐ ์ด๋ฆ„
ํžˆ์Šค ๋ ˆ์ € => ์‚ฌ๋žŒ ์ด๋ฆ„
์กฐ์ปค => ์บ๋ฆญํ„ฐ ์ด๋ฆ„
2010๋…„ => ๋‚ ์งœ_์—ฐ(๋…„)
์ธ์…‰์…˜ => ์˜ํ™”/์†Œ์„ค ์ž‘ํ’ˆ๋ช…
2010 => ๋‚ ์งœ_์—ฐ(๋…„)
ํฌ๋ฆฌ์Šคํ† ํผ ๋†€๋ž€ => ์‚ฌ๋žŒ ์ด๋ฆ„
๊ฐ๋… => ์ง์—…๋ช…

If you have a large amount of entities and want to pre-embed them, please, refer to the following code snippet:

labels = ["your entities"]
texts = ["your texts"]

entity_embeddings = model.encode_labels(labels, batch_size = 8)

outputs = model.batch_predict_with_embeds(texts, entity_embeddings, labels)

Dataset

TTA 150

entity_type_mapping = {
    "PS": {
        "PS_NAME": "์ธ๋ฌผ_์‚ฌ๋žŒ",
        "PS_CHARACTER": "์ธ๋ฌผ_๊ฐ€์ƒ ์บ๋ฆญํ„ฐ",
        "PS_PET": "์ธ๋ฌผ_๋ฐ˜๋ ค๋™๋ฌผ",
    },
    "FD": {
        "FD_SCIENCE": "ํ•™๋ฌธ ๋ถ„์•ผ_๊ณผํ•™",
        "FD_SOCIAL_SCIENCE": "ํ•™๋ฌธ ๋ถ„์•ผ_์‚ฌํšŒ๊ณผํ•™",
        "FD_MEDICINE": "ํ•™๋ฌธ ๋ถ„์•ผ_์˜ํ•™",
        "FD_ART": "ํ•™๋ฌธ ๋ถ„์•ผ_์˜ˆ์ˆ ",
        "FD_HUMANITIES": "ํ•™๋ฌธ ๋ถ„์•ผ_์ธ๋ฌธํ•™",
        "FD_OTHERS": "ํ•™๋ฌธ ๋ถ„์•ผ_๊ธฐํƒ€",
    },
    "TR": {
        "TR_SCIENCE": "์ด๋ก _๊ณผํ•™",
        "TR_SOCIAL_SCIENCE": "์ด๋ก _์‚ฌํšŒ๊ณผํ•™",
        "TR_MEDICINE": "์ด๋ก _์˜ํ•™",
        "TR_ART": "์ด๋ก _์˜ˆ์ˆ ",
        "TR_HUMANITIES": "์ด๋ก _์ฒ ํ•™/์–ธ์–ด/์—ญ์‚ฌ",
        "TR_OTHERS": "์ด๋ก _๊ธฐํƒ€",
    },
    "AF": {
        "AF_BUILDING": "์ธ๊ณต๋ฌผ_๊ฑด์ถ•๋ฌผ/ํ† ๋ชฉ๊ฑด์„ค๋ฌผ",
        "AF_CULTURAL_ASSET": "์ธ๊ณต๋ฌผ_๋ฌธํ™”์žฌ",
        "AF_ROAD": "์ธ๊ณต๋ฌผ_๋„๋กœ/์ฒ ๋กœ",
        "AF_TRANSPORT": "์ธ๊ณต๋ฌผ_๊ตํ†ต์ˆ˜๋‹จ/์šด์†ก์ˆ˜๋‹จ",
        "AF_MUSICAL_INSTRUMENT": "์ธ๊ณต๋ฌผ_์•…๊ธฐ",
        "AF_WEAPON": "์ธ๊ณต๋ฌผ_๋ฌด๊ธฐ",
        "AFA_DOCUMENT": "์ธ๊ณต๋ฌผ_๋„์„œ/์„œ์  ์ž‘ํ’ˆ๋ช…",
        "AFA_PERFORMANCE": "์ธ๊ณต๋ฌผ_์ถค/๊ณต์—ฐ/์—ฐ๊ทน ์ž‘ํ’ˆ๋ช…",
        "AFA_VIDEO": "์ธ๊ณต๋ฌผ_์˜ํ™”/TV ํ”„๋กœ๊ทธ๋žจ",
        "AFA_ART_CRAFT": "์ธ๊ณต๋ฌผ_๋ฏธ์ˆ /์กฐํ˜• ์ž‘ํ’ˆ๋ช…",
        "AFA_MUSIC": "์ธ๊ณต๋ฌผ_์Œ์•… ์ž‘ํ’ˆ๋ช…",
        "AFW_SERVICE_PRODUCTS": "์ธ๊ณต๋ฌผ_์„œ๋น„์Šค ์ƒํ’ˆ",
        "AFW_OTHER_PRODUCTS": "์ธ๊ณต๋ฌผ_๊ธฐํƒ€ ์ƒํ’ˆ",
    },
    "OG": {
        "OGG_ECONOMY": "๊ธฐ๊ด€_๊ฒฝ์ œ",
        "OGG_EDUCATION": "๊ธฐ๊ด€_๊ต์œก",
        "OGG_MILITARY": "๊ธฐ๊ด€_๊ตฐ์‚ฌ",
        "OGG_MEDIA": "๊ธฐ๊ด€_๋ฏธ๋””์–ด",
        "OGG_SPORTS": "๊ธฐ๊ด€_์Šคํฌ์ธ ",
        "OGG_ART": "๊ธฐ๊ด€_์˜ˆ์ˆ ",
        "OGG_MEDICINE": "๊ธฐ๊ด€_์˜๋ฃŒ",
        "OGG_RELIGION": "๊ธฐ๊ด€_์ข…๊ต",
        "OGG_SCIENCE": "๊ธฐ๊ด€_๊ณผํ•™",
        "OGG_LIBRARY": "๊ธฐ๊ด€_๋„์„œ๊ด€",
        "OGG_LAW": "๊ธฐ๊ด€_๋ฒ•๋ฅ ",
        "OGG_POLITICS": "๊ธฐ๊ด€_์ •๋ถ€/๊ณต๊ณต",
        "OGG_FOOD": "๊ธฐ๊ด€_์Œ์‹ ์—…์ฒด",
        "OGG_HOTEL": "๊ธฐ๊ด€_์ˆ™๋ฐ• ์—…์ฒด",
        "OGG_OTHERS": "๊ธฐ๊ด€_๊ธฐํƒ€",
    },
    "LC": {
        "LCP_COUNTRY": "์žฅ์†Œ_๊ตญ๊ฐ€",
        "LCP_PROVINCE": "์žฅ์†Œ_๋„/์ฃผ ์ง€์—ญ",
        "LCP_COUNTY": "์žฅ์†Œ_์„ธ๋ถ€ ํ–‰์ •๊ตฌ์—ญ",
        "LCP_CITY": "์žฅ์†Œ_๋„์‹œ",
        "LCP_CAPITALCITY": "์žฅ์†Œ_์ˆ˜๋„",
        "LCG_RIVER": "์žฅ์†Œ_๊ฐ•/ํ˜ธ์ˆ˜",
        "LCG_OCEAN": "์žฅ์†Œ_๋ฐ”๋‹ค",
        "LCG_BAY": "์žฅ์†Œ_๋ฐ˜๋„/๋งŒ",
        "LCG_MOUNTAIN": "์žฅ์†Œ_์‚ฐ/์‚ฐ๋งฅ",
        "LCG_ISLAND": "์žฅ์†Œ_์„ฌ",
        "LCG_CONTINENT": "์žฅ์†Œ_๋Œ€๋ฅ™",
        "LC_SPACE": "์žฅ์†Œ_์ฒœ์ฒด",
        "LC_OTHERS": "์žฅ์†Œ_๊ธฐํƒ€",
    },
    "CV": {
        "CV_CULTURE": "๋ฌธ๋ช…_๋ฌธ๋ช…/๋ฌธํ™”",
        "CV_TRIBE": "๋ฌธ๋ช…_๋ฏผ์กฑ/์ข…์กฑ",
        "CV_LANGUAGE": "๋ฌธ๋ช…_์–ธ์–ด",
        "CV_POLICY": "๋ฌธ๋ช…_์ œ๋„/์ •์ฑ…",
        "CV_LAW": "๋ฌธ๋ช…_๋ฒ•/๋ฒ•๋ฅ ",
        "CV_CURRENCY": "๋ฌธ๋ช…_ํ†ตํ™”",
        "CV_TAX": "๋ฌธ๋ช…_์กฐ์„ธ",
        "CV_FUNDS": "๋ฌธ๋ช…_์—ฐ๊ธˆ/๊ธฐ๊ธˆ",
        "CV_ART": "๋ฌธ๋ช…_์˜ˆ์ˆ ",
        "CV_SPORTS": "๋ฌธ๋ช…_์Šคํฌ์ธ ",
        "CV_SPORTS_POSITION": "๋ฌธ๋ช…_์Šคํฌ์ธ  ํฌ์ง€์…˜",
        "CV_SPORTS_INST": "๋ฌธ๋ช…_์Šคํฌ์ธ  ์šฉํ’ˆ/๋„๊ตฌ",
        "CV_PRIZE": "๋ฌธ๋ช…_์ƒ/ํ›ˆ์žฅ",
        "CV_RELATION": "๋ฌธ๋ช…_๊ฐ€์กฑ/์นœ์กฑ ๊ด€๊ณ„",
        "CV_OCCUPATION": "๋ฌธ๋ช…_์ง์—…",
        "CV_POSITION": "๋ฌธ๋ช…_์ง์œ„/์ง์ฑ…",
        "CV_FOOD": "๋ฌธ๋ช…_์Œ์‹",
        "CV_DRINK": "๋ฌธ๋ช…_์Œ๋ฃŒ/์ˆ ",
        "CV_FOOD_STYLE": "๋ฌธ๋ช…_์Œ์‹ ์œ ํ˜•",
        "CV_CLOTHING": "๋ฌธ๋ช…_์˜๋ณต/์„ฌ์œ ",
        "CV_BUILDING_TYPE": "๋ฌธ๋ช…_๊ฑด์ถ• ์–‘์‹",
    },
    "DT": {
        "DT_DURATION": "๋‚ ์งœ_๊ธฐ๊ฐ„",
        "DT_DAY": "๋‚ ์งœ_์ผ",
        "DT_WEEK": "๋‚ ์งœ_์ฃผ(์ฃผ์ฐจ)",
        "DT_MONTH": "๋‚ ์งœ_๋‹ฌ(์›”)",
        "DT_YEAR": "๋‚ ์งœ_์—ฐ(๋…„)",
        "DT_SEASON": "๋‚ ์งœ_๊ณ„์ ˆ",
        "DT_GEOAGE": "๋‚ ์งœ_์ง€์งˆ์‹œ๋Œ€",
        "DT_DYNASTY": "๋‚ ์งœ_์™•์กฐ์‹œ๋Œ€",
        "DT_OTHERS": "๋‚ ์งœ_๊ธฐํƒ€",
    },
    "TI": {
        "TI_DURATION": "์‹œ๊ฐ„_๊ธฐ๊ฐ„",
        "TI_HOUR": "์‹œ๊ฐ„_์‹œ๊ฐ(์‹œ)",
        "TI_MINUTE": "์‹œ๊ฐ„_๋ถ„",
        "TI_SECOND": "์‹œ๊ฐ„_์ดˆ",
        "TI_OTHERS": "์‹œ๊ฐ„_๊ธฐํƒ€",
    },
    "QT": {
        "QT_AGE": "์ˆ˜๋Ÿ‰_๋‚˜์ด",
        "QT_SIZE": "์ˆ˜๋Ÿ‰_๋„“์ด/๋ฉด์ ",
        "QT_LENGTH": "์ˆ˜๋Ÿ‰_๊ธธ์ด/๊ฑฐ๋ฆฌ",
        "QT_COUNT": "์ˆ˜๋Ÿ‰_์ˆ˜๋Ÿ‰/๋นˆ๋„",
        "QT_MAN_COUNT": "์ˆ˜๋Ÿ‰_์ธ์›์ˆ˜",
        "QT_WEIGHT": "์ˆ˜๋Ÿ‰_๋ฌด๊ฒŒ",
        "QT_PERCENTAGE": "์ˆ˜๋Ÿ‰_๋ฐฑ๋ถ„์œจ",
        "QT_SPEED": "์ˆ˜๋Ÿ‰_์†๋„",
        "QT_TEMPERATURE": "์ˆ˜๋Ÿ‰_์˜จ๋„",
        "QT_VOLUME": "์ˆ˜๋Ÿ‰_๋ถ€ํ”ผ",
        "QT_ORDER": "์ˆ˜๋Ÿ‰_์ˆœ์„œ",
        "QT_PRICE": "์ˆ˜๋Ÿ‰_๊ธˆ์•ก",
        "QT_PHONE": "์ˆ˜๋Ÿ‰_์ „ํ™”๋ฒˆํ˜ธ",
        "QT_SPORTS": "์ˆ˜๋Ÿ‰_์Šคํฌ์ธ  ์ˆ˜๋Ÿ‰",
        "QT_CHANNEL": "์ˆ˜๋Ÿ‰_์ฑ„๋„ ๋ฒˆํ˜ธ",
        "QT_ALBUM": "์ˆ˜๋Ÿ‰_์•จ๋ฒ” ์ˆ˜๋Ÿ‰",
        "QT_ADDRESS": "์ˆ˜๋Ÿ‰_์ฃผ์†Œ ๊ด€๋ จ ์ˆซ์ž",
        "QT_OTHERS": "์ˆ˜๋Ÿ‰_๊ธฐํƒ€ ์ˆ˜๋Ÿ‰",
    },
    "EV": {
        "EV_ACTIVITY": "์‚ฌ๊ฑด_์‚ฌํšŒ์šด๋™/์„ ์–ธ",
        "EV_WAR_REVOLUTION": "์‚ฌ๊ฑด_์ „์Ÿ/ํ˜๋ช…",
        "EV_SPORTS": "์‚ฌ๊ฑด_์Šคํฌ์ธ  ํ–‰์‚ฌ",
        "EV_FESTIVAL": "์‚ฌ๊ฑด_์ถ•์ œ/์˜ํ™”์ œ",
        "EV_OTHERS": "์‚ฌ๊ฑด_๊ธฐํƒ€",
    },
    "AM": {
        "AM_INSECT": "๋™๋ฌผ_๊ณค์ถฉ",
        "AM_BIRD": "๋™๋ฌผ_์กฐ๋ฅ˜",
        "AM_FISH": "๋™๋ฌผ_์–ด๋ฅ˜",
        "AM_MAMMALIA": "๋™๋ฌผ_ํฌ์œ ๋ฅ˜",
        "AM_AMPHIBIA": "๋™๋ฌผ_์–‘์„œ๋ฅ˜",
        "AM_REPTILIA": "๋™๋ฌผ_ํŒŒ์ถฉ๋ฅ˜",
        "AM_TYPE": "๋™๋ฌผ_๋ถ„๋ฅ˜๋ช…",
        "AM_PART": "๋™๋ฌผ_๋ถ€์œ„๋ช…",
        "AM_OTHERS": "๋™๋ฌผ_๊ธฐํƒ€",
    },
    "PT": {
        "PT_FRUIT": "์‹๋ฌผ_๊ณผ์ผ/์—ด๋งค",
        "PT_FLOWER": "์‹๋ฌผ_๊ฝƒ",
        "PT_TREE": "์‹๋ฌผ_๋‚˜๋ฌด",
        "PT_GRASS": "์‹๋ฌผ_ํ’€",
        "PT_TYPE": "์‹๋ฌผ_๋ถ„๋ฅ˜๋ช…",
        "PT_PART": "์‹๋ฌผ_๋ถ€์œ„๋ช…",
        "PT_OTHERS": "์‹๋ฌผ_๊ธฐํƒ€",
    },
    "MT": {
        "MT_ELEMENT": "๋ฌผ์งˆ_์›์†Œ",
        "MT_METAL": "๋ฌผ์งˆ_๊ธˆ์†",
        "MT_ROCK": "๋ฌผ์งˆ_์•”์„",
        "MT_CHEMICAL": "๋ฌผ์งˆ_ํ™”ํ•™",
    },
    "TM": {
        "TM_COLOR": "์šฉ์–ด_์ƒ‰๊น”",
        "TM_DIRECTION": "์šฉ์–ด_๋ฐฉํ–ฅ",
        "TM_CLIMATE": "์šฉ์–ด_๊ธฐํ›„ ์ง€์—ญ",
        "TM_SHAPE": "์šฉ์–ด_๋ชจ์–‘/ํ˜•ํƒœ",
        "TM_CELL_TISSUE_ORGAN": "์šฉ์–ด_์„ธํฌ/์กฐ์ง/๊ธฐ๊ด€",
        "TMM_DISEASE": "์šฉ์–ด_์ฆ์ƒ/์งˆ๋ณ‘",
        "TMM_DRUG": "์šฉ์–ด_์•ฝํ’ˆ",
        "TMI_HW": "์šฉ์–ด_IT ํ•˜๋“œ์›จ์–ด",
        "TMI_SW": "์šฉ์–ด_IT ์†Œํ”„ํŠธ์›จ์–ด",
        "TMI_SITE": "์šฉ์–ด_URL ์ฃผ์†Œ",
        "TMI_EMAIL": "์šฉ์–ด_์ด๋ฉ”์ผ ์ฃผ์†Œ",
        "TMI_MODEL": "์šฉ์–ด_์ œํ’ˆ ๋ชจ๋ธ๋ช…",
        "TMI_SERVICE": "์šฉ์–ด_IT ์„œ๋น„์Šค",
        "TMI_PROJECT": "์šฉ์–ด_ํ”„๋กœ์ ํŠธ",
        "TMIG_GENRE": "์šฉ์–ด_๊ฒŒ์ž„ ์žฅ๋ฅด",
        "TM_SPORTS": "์šฉ์–ด_์Šคํฌ์ธ ",
    },
}

Evaluation

Evaluate with the konne dev set :
The evaluation results presented in the table below, except for the values I provided, were derived from the following source: taeminlee/gliner_ko.

Model Precision(P) Recall(R) F1
gliner-bi-ko-small-v1 (t=0.5) 81.53% 74.16% 77.67%
gliner-bi-ko-xlarge-v1 (t=0.5) 84.73% 77.71% 81.07%
Gliner-ko (t=0.5) 72.51% 79.82% 75.99%
Gliner Large-v2 (t=0.5) 34.33% 19.50% 24.87%
Gliner Multi (t=0.5) 40.94% 34.18% 37.26%
Pororo 70.25% 57.94% 63.50%

Citation

@misc{gliner_bi_ko_xlarge_v1,
  title={gliner-bi-ko-xlarge-v1},
  author={Gihwan Kim},
  year={2025},
  url={https://huggingface.co/lots-o/gliner-bi-ko-xlarge-v1}
  publisher={Hugging Face}
}
@misc{zaratiana2023gliner,
      title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer}, 
      author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois},
      year={2023},
      eprint={2311.08526},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for lots-o/gliner-bi-ko-xlarge-v1

Finetuned
(1)
this model

Collection including lots-o/gliner-bi-ko-xlarge-v1