File size: 5,921 Bytes
28a72b5 aedd84d 28a72b5 18caddb 28a72b5 1f047e6 28a72b5 1f047e6 28a72b5 1f047e6 28a72b5 1f047e6 28a72b5 1f047e6 28a72b5 1f047e6 28a72b5 1f047e6 28a72b5 1f047e6 28a72b5 1f047e6 28a72b5 1f047e6 28a72b5 1f047e6 28a72b5 f606a6b 28a72b5 f606a6b 28a72b5 f606a6b 28a72b5 1f047e6 28a72b5 1f047e6 28a72b5 9dea5a0 28a72b5 1f047e6 9dea5a0 28a72b5 9dea5a0 28a72b5 9dea5a0 28a72b5 9dea5a0 28a72b5 9dea5a0 28a72b5 9dea5a0 28a72b5 9dea5a0 28a72b5 9dea5a0 28a72b5 1f047e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
---
task_categories:
- object-detection
tags:
- yolo
- yolo11
- hardhat
- hat
base_model:
- Ultralytics/YOLO11
widget:
- text: "Helmet detection"
output:
url: example.png
pipeline_tag: object-detection
model-index:
- name: hardhat-or-hat
results:
- task:
type: object-detection
dataset:
type: safety-equipment
name: Safety Equipment
args:
epochs: 35
batch: 2
imgsz: 640
patience: 5
optimizer: SGD
lr0: 0.001
lrf: 0.01
momentum: 0.9
weight_decay: 0.0005
warmup_epochs: 3
warmup_bias_lr: 0.01
warmup_momentum: 0.8
metrics:
- type: precision
name: Precision
value: 0.844
- type: recall
name: Recall
value: 0.847
- type: mAP50
name: mAP50
value: 0.893
- type: mAP50-95
name: mAP50-95
value: 0.546
---
# Model for detecting Hardhats and Hats
<div align="center">
<img width="640" alt="luisarizmendi/hardhat-or-hat" src="example.png">
</div>
## Model binary
You can [download the model from here](https://github.com/luisarizmendi/ai-apps/raw/refs/heads/main/models/luisarizmendi/object-detection-hardhat-or-hat/object-detection-hardhat-or-hat-m.pt)
## Labels
```
- hat
- helmet
- no_helmet
```
## Base Model
Ultralytics/YOLO11m
## Model metrics
```
YOLO11m summary (fused): 303 layers, 20,032,345 parameters, 0 gradients, 67.7 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95)
all 1992 15306 0.844 0.847 0.893 0.546
hat 244 287 0.869 0.811 0.876 0.578
helmet 1202 3942 0.916 0.892 0.942 0.61
no_helmet 741 11077 0.746 0.838 0.861 0.45
```
<div align="center">
<img width="640" alt="luisarizmendi/hardhat-or-hat" src="confusion_matrix_normalized.png"> <img width="640" alt="luisarizmendi/hardhat-or-hat" src="results.png">
</div>
## Model Dataset
[https://universe.roboflow.com/luisarizmendi/hardhat-or-hat](https://universe.roboflow.com/luisarizmendi/hardhat-or-hat)
## Model training
You can [review the Jupyter notebook here](https://github.com/luisarizmendi/ai-apps/blob/main/dev/hardhat-or-hat/train.ipynb)
### Hyperparameters
```
epochs: 35
batch: 2
imgsz: 640
patience: 5
optimizer: 'SGD'
lr0: 0.001
lrf: 0.01
momentum: 0.9
weight_decay: 0.0005
warmup_epochs: 3
warmup_bias_lr: 0.01
warmup_momentum: 0.8
```
### Augmentation
```
hsv_h=0.015, # Image HSV-Hue augmentationc
hsv_s=0.7, # Image HSV-Saturation augmentation
hsv_v=0.4, # Image HSV-Value augmentation
degrees=10, # Image rotation (+/- deg)
translate=0.1, # Image translation (+/- fraction)
scale=0.3, # Image scale (+/- gain)
shear=0.0, # Image shear (+/- deg)
perspective=0.0, # Image perspective
flipud=0.1, # Image flip up-down
fliplr=0.1, # Image flip left-right
mosaic=1.0, # Image mosaic
mixup=0.0, # Image mixup
```
## Model Usage
### Usage with Huggingface spaces
If you don't want to run it locally, you can use [this huggingface space](https://huggingface.co/spaces/luisarizmendi/object-detection-batch) that I've created with this code but be aware that this will be slow since I'm using a free instance, so it's better to run it locally with the python script below.
Remember to check that the Model URL is pointing to the model that you want to test.
<div align="center">
<img width="640" alt="luisarizmendi/hardhat-or-hat" src="https://huggingface.co/luisarizmendi/hardhat-or-hat/resolve/main/spaces-example.png">
</div>
### Usage with Python script
Install the following PIP requirements
```
gradio
ultralytics
Pillow
opencv-python
torch
```
Then [run the python code below ](https://github.com/luisarizmendi/ai-apps/raw/refs/heads/main/models/luisarizmendi/object-detector-hardhat-or-hat/run_model.py) and open `http://localhost:7860` in a browser to upload and scan the images.
```
import gradio as gr
from ultralytics import YOLO
from PIL import Image
import os
import cv2
import torch
DEFAULT_MODEL_URL = "https://github.com/luisarizmendi/ai-apps/raw/refs/heads/main/models/luisarizmendi/object-detection-hardhat-or-hat/object-detection-hardhat-or-hat-m.pt"
def detect_objects_in_files(model_input, files):
"""
Processes uploaded images for object detection.
"""
if not files:
return "No files uploaded.", []
model = YOLO(str(model_input))
if torch.cuda.is_available():
model.to('cuda')
print("Using GPU for inference")
else:
print("Using CPU for inference")
results_images = []
for file in files:
try:
image = Image.open(file).convert("RGB")
results = model(image)
result_img_bgr = results[0].plot()
result_img_rgb = cv2.cvtColor(result_img_bgr, cv2.COLOR_BGR2RGB)
results_images.append(result_img_rgb)
# If you want that images appear one by one (slower)
#yield "Processing image...", results_images
except Exception as e:
return f"Error processing file: {file}. Exception: {str(e)}", []
del model
torch.cuda.empty_cache()
return "Processing completed.", results_images
interface = gr.Interface(
fn=detect_objects_in_files,
inputs=[
gr.Textbox(value=DEFAULT_MODEL_URL, label="Model URL", placeholder="Enter the model URL"),
gr.Files(file_types=["image"], label="Select Images"),
],
outputs=[
gr.Textbox(label="Status"),
gr.Gallery(label="Results")
],
title="Object Detection on Images",
description="Upload images to perform object detection. The model will process each image and display the results."
)
if __name__ == "__main__":
interface.launch()
```
|