roberta-pol / README.md
lulygavri's picture
Training in progress epoch 1
3578cec
---
license: apache-2.0
base_model: PlanTL-GOB-ES/roberta-base-bne
tags:
- generated_from_keras_callback
model-index:
- name: lulygavri/roberta-pol
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# lulygavri/roberta-pol
This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0734
- Validation Loss: 0.1397
- Train Accuracy: 0.9515
- Train Precision: [0.61956854 0.99608521 0.83460292]
- Train Precision W: 0.9635
- Train Recall: [0.97308663 0.94779554 0.97394503]
- Train Recall W: 0.9515
- Train F1: [0.75709278 0.97134057 0.89890607]
- Train F1 W: 0.9548
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11994, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 500, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch |
|:----------:|:---------------:|:--------------:|:----------------------------------:|:-----------------:|:----------------------------------:|:--------------:|:----------------------------------:|:----------:|:-----:|
| 0.0734 | 0.1397 | 0.9515 | [0.61956854 0.99608521 0.83460292] | 0.9635 | [0.97308663 0.94779554 0.97394503] | 0.9515 | [0.75709278 0.97134057 0.89890607] | 0.9548 | 1 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.1