sub1-trans / README.md
lulygavri's picture
Training in progress epoch 5
96aadb6
|
raw
history blame
3.36 kB
metadata
base_model: dccuchile/bert-base-spanish-wwm-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: lulygavri/sub1-trans
    results: []

lulygavri/sub1-trans

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0428
  • Validation Loss: 0.4923
  • Train Accuracy: 0.9
  • Train Precision: [0.90909091 0. ]
  • Train Precision W: 0.8273
  • Train Recall: [0.98901099 0. ]
  • Train Recall W: 0.9
  • Train F1: [0.94736842 0. ]
  • Train F1 W: 0.8621
  • Epoch: 5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 34, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 500, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Train Precision Train Precision W Train Recall Train Recall W Train F1 Train F1 W Epoch
0.6479 0.4942 0.91 [0.91 0. ] 0.8281 [1. 0.] 0.91 [0.95287958 0. ] 0.8671 1
0.4492 0.4305 0.8 [0.9382716 0.21052632] 0.8728 [0.83516484 0.44444444] 0.8 [0.88372093 0.28571429] 0.8299 2
0.1358 0.3080 0.88 [0.90721649 0. ] 0.8256 [0.96703297 0. ] 0.88 [0.93617021 0. ] 0.8519 3
0.0545 0.3801 0.9 [0.90909091 0. ] 0.8273 [0.98901099 0. ] 0.9 [0.94736842 0. ] 0.8621 4
0.0428 0.4923 0.9 [0.90909091 0. ] 0.8273 [0.98901099 0. ] 0.9 [0.94736842 0. ] 0.8621 5

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2