sub2-trans / README.md
lulygavri's picture
Training in progress epoch 5
0323426
metadata
base_model: dccuchile/bert-base-spanish-wwm-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: lulygavri/sub2-trans
    results: []

lulygavri/sub2-trans

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0341
  • Validation Loss: 0.0805
  • Train Accuracy: 0.9762
  • Train Precision: [0.96558916 0.99786325]
  • Train Precision W: 0.9769
  • Train Recall: [0.99892125 0.934 ]
  • Train Recall W: 0.9762
  • Train F1: [0.98197243 0.96487603]
  • Train F1 W: 0.9760
  • Epoch: 5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3436, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 500, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Train Precision Train Precision W Train Recall Train Recall W Train F1 Train F1 W Epoch
0.2010 0.7379 0.7400 [0.71450617 0.99236641] 0.8119 [0.99892125 0.26 ] 0.7400 [0.83310841 0.41204437] 0.6856 1
0.1127 0.4136 0.7982 [0.76339654 0.9953271 ] 0.8447 [0.99892125 0.426 ] 0.7982 [0.86542056 0.59663866] 0.7712 2
0.0818 0.1851 0.9411 [0.91691395 1. ] 0.9460 [1. 0.832] 0.9411 [0.95665635 0.90829694] 0.9397 3
0.0511 0.1053 0.9671 [0.9526749 0.9978022] 0.9685 [0.99892125 0.908 ] 0.9671 [0.97525013 0.95078534] 0.9667 4
0.0341 0.0805 0.9762 [0.96558916 0.99786325] 0.9769 [0.99892125 0.934 ] 0.9762 [0.98197243 0.96487603] 0.9760 5

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2