t-pol-AL / README.md
lulygavri's picture
Training in progress epoch 1
08667ce
metadata
license: apache-2.0
base_model: PlanTL-GOB-ES/roberta-base-bne
tags:
  - generated_from_keras_callback
model-index:
  - name: lulygavri/t-pol-AL
    results: []

lulygavri/t-pol-AL

This model is a fine-tuned version of PlanTL-GOB-ES/roberta-base-bne on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 1.1064
  • Validation Loss: 1.1070
  • Train Accuracy: 0.2976
  • Train Precision: [0. 0. 0.29761905]
  • Train Precision W: 0.0886
  • Train Recall: [0. 0. 1.]
  • Train Recall W: 0.2976
  • Train F1: [0. 0. 0.4587156]
  • Train F1 W: 0.1365
  • Epoch: 1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -428, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 500, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Train Precision Train Precision W Train Recall Train Recall W Train F1 Train F1 W Epoch
1.1064 1.1070 0.2976 [0. 0. 0.29761905] 0.0886 [0. 0. 1.] 0.2976 [0. 0. 0.4587156] 0.1365 1

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.15.0
  • Datasets 2.17.0
  • Tokenizers 0.15.1