mHossain's picture
End of training
dce09a4 verified
---
library_name: transformers
base_model: csebuetnlp/banglat5
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: banglat5_deed_sum_test_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# banglat5_deed_sum_test_1
This model is a fine-tuned version of [csebuetnlp/banglat5](https://huggingface.co/csebuetnlp/banglat5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 0.0
- Rouge2: 0.0
- Rougel: 0.0
- Rougelsum: 0.0
- Gen Len: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5000
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.0 | 0.9973 | 183 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 2.0 | 367 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 2.9973 | 550 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 4.0 | 734 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 4.9973 | 917 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 6.0 | 1101 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 6.9973 | 1284 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 7.9782 | 1464 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1