thymiantheherb's picture
Upload tokenizer
d7fb994 verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - bleu
base_model: distilbert/distilgpt2
model-index:
  - name: distilgpt2-finetuned
    results: []

distilgpt2-finetuned

This model is a fine-tuned version of distilbert/distilgpt2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7322
  • Bleu: 0.0145
  • Bertscore Precision: 0.1505
  • Bertscore Recall: 0.1674
  • Bertscore F1: 0.1581

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Bertscore Precision Bertscore Recall Bertscore F1
5.0087 1.0 3223 3.9456 0.0088 0.1478 0.1638 0.1551
4.8889 2.0 6446 3.7706 0.0093 0.1480 0.1642 0.1554
4.9152 3.0 9669 3.6252 0.0097 0.1483 0.1646 0.1557
4.647 4.0 12892 3.5105 0.0103 0.1486 0.1649 0.1560
4.4683 5.0 16115 3.4093 0.0108 0.1489 0.1652 0.1563
4.4007 6.0 19338 3.3225 0.0110 0.1491 0.1654 0.1565
4.3966 7.0 22561 3.2444 0.0115 0.1493 0.1656 0.1567
4.3414 8.0 25784 3.1662 0.0117 0.1494 0.1657 0.1568
4.2446 9.0 29007 3.1021 0.0122 0.1497 0.1660 0.1571
4.2464 10.0 32230 3.0384 0.0125 0.1499 0.1662 0.1573
4.1739 11.0 35453 2.9789 0.0128 0.1499 0.1665 0.1574
4.08 12.0 38676 2.9295 0.0131 0.1501 0.1666 0.1576
4.001 13.0 41899 2.8857 0.0135 0.1502 0.1668 0.1577
3.9277 14.0 45122 2.8464 0.0136 0.1502 0.1669 0.1578
3.9709 15.0 48345 2.8137 0.0139 0.1503 0.1670 0.1578
3.9192 16.0 51568 2.7872 0.0141 0.1503 0.1672 0.1579
3.8916 17.0 54791 2.7644 0.0143 0.1504 0.1673 0.1580
3.8489 18.0 58014 2.7475 0.0144 0.1505 0.1674 0.1581
3.9091 19.0 61237 2.7364 0.0145 0.1505 0.1674 0.1581
3.9271 20.0 64460 2.7322 0.0145 0.1505 0.1674 0.1581

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1