Edit model card

Polyglot-4x7b-24b

polyglot

Polyglot-4x7b is a Mixture of Experts approach to a multilingual model.

This project is an experiment to see if each expert can be of a different language. The answer is yes.

The model is a merge of models that are capable of Chinese and Japanese output.

  • teknium/OpenHermes-2.5-Mistral-7B
  • oshizo/japanese-e5-mistral-7b_slerp
  • cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
  • s3nh/Mistral-7B-Evol-Instruct-Chinese

TODO:

  1. [] polyglot tokenizer

Other polyglot models

Code Example

Inference Colab Live demo available on Spaces

from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_response(prompt):
    """
    Generate a response from the model based on the input prompt.

    Args:
    prompt (str): Prompt for the model.

    Returns:
    str: The generated response from the model.
    """
    # Tokenize the input prompt
    inputs = tokenizer(prompt, return_tensors="pt")

    # Generate output tokens
    outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)

    # Decode the generated tokens to a string
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response

# Load the model and tokenizer
model_id = "macadeliccc/laser-polyglot-4x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)

# Example prompts in different languages
english_prompt = "Write a quicksort algorithm in python"
chinese_prompt = "用Python写一个快速排序算法"
japanese_prompt = "Pythonでクイックソートアルゴリズムを書いてください"

# Generate and print responses for each language
print("English Response:")
print(generate_response(english_prompt), "\n")

print("Chinese Response:")
print(generate_response(chinese_prompt), "\n")

print("Japanese Response:")
print(generate_response(japanese_prompt), "\n")

Example Output

English:

Write a quicksort algorithm in python.

def quicksort(arr):
    if len(arr) <= 1:
        return arr
    else:
        pivot = arr[0]
        less = [i for i in arr[1:] if i <= pivot]
        greater = [i for i in arr[1:] if i > pivot]
        return quicksort(less) + [pivot] + quicksort(greater)

arr = [5, 2, 9, 1, 5, 7, 4, 8, 6, 3]
print(quicksort(arr))

This is a simple implementation of the quicksort algorithm in python. The function quicksort takes an array as input and returns a sorted array. The algorithm works by selecting a pivot element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. The process is then repeated recursively on the sub-arrays until the entire array is sorted.

Chinese Response:

用Python写一个快速排序算法

def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    else:
        pivot = arr[0]
        less = [i for i in arr[1:] if i <= pivot]
        greater = [i for i in arr[1:] if i > pivot]
        return quick_sort(less) + [pivot] + quick_sort(greater)

arr = [3, 5, 2, 1, 4, 6, 8, 7]
print(quick_sort(arr))

这个程序的时间复杂度为O(nlogn),空间复杂度为O(n)。

Japanese Response:

Pythonでクイックソートアルゴリズムを書いてください。

def quicksort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    left = [x for x in arr[1:] if x < pivot]
    right = [x for x in arr[1:] if x >= pivot]
    return quicksort(left) + [pivot] + quicksort(right)

print(quicksort([3,6,8,10,1,5,9,2,4,7]))

このコードはクイックソートアルゴリズムを実装しています。クイックソートは一種の分割と conquers アルゴリズムで、配列を分割し、それぞれの部分配列を再帰的にソートします。

この実装では、配列の最初の要素をピボットとして使用します。そして、配列を2つの

Evaluations

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge Yaml none 0 acc 0.5495 ± 0.0145
none 0 acc_norm 0.5794 ± 0.0144
arc_easy Yaml none 0 acc 0.8304 ± 0.0077
none 0 acc_norm 0.8068 ± 0.0081
boolq Yaml none 0 acc 0.8749 ± 0.0058
hellaswag Yaml none 0 acc 0.6276 ± 0.0048
none 0 acc_norm 0.8157 ± 0.0039
openbookqa Yaml none 0 acc 0.3180 ± 0.0208
none 0 acc_norm 0.4460 ± 0.0223
piqa Yaml none 0 acc 0.8139 ± 0.0091
none 0 acc_norm 0.8237 ± 0.0089
winogrande Yaml none 0 acc 0.7419 ± 0.0123

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 65.79
AI2 Reasoning Challenge (25-Shot) 64.16
HellaSwag (10-Shot) 84.98
MMLU (5-Shot) 63.88
TruthfulQA (0-shot) 55.47
Winogrande (5-shot) 77.82
GSM8k (5-shot) 48.45
Downloads last month
1,182
Safetensors
Model size
24.2B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including macadeliccc/laser-polyglot-4x7b

Evaluation results