emotion-classifier

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1335
  • Model Preparation Time: 0.0027
  • Accuracy: 0.945
  • F1: 0.9449
  • Precision: 0.9453
  • Recall: 0.945

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Accuracy F1 Precision Recall
1.795 0.01 10 1.7917 0.0027 0.136 0.0339 0.0256 0.136
1.7887 0.02 20 1.7832 0.0027 0.1405 0.0477 0.4637 0.1405
1.7814 0.03 30 1.7702 0.0027 0.189 0.1275 0.3349 0.189
1.769 0.04 40 1.7514 0.0027 0.2725 0.2001 0.2475 0.2725
1.7483 0.05 50 1.7202 0.0027 0.3425 0.2659 0.2640 0.3425
1.7084 0.06 60 1.6788 0.0027 0.3505 0.2548 0.2127 0.3505
1.662 0.07 70 1.6317 0.0027 0.3555 0.2747 0.2241 0.3555
1.5848 0.08 80 1.5909 0.0027 0.372 0.2877 0.2351 0.372
1.5767 0.09 90 1.5733 0.0027 0.3985 0.3088 0.2533 0.3985
1.6005 0.1 100 1.5589 0.0027 0.4435 0.3346 0.2773 0.4435
1.5567 0.11 110 1.5449 0.0027 0.4755 0.3649 0.2969 0.4755
1.5349 0.12 120 1.5221 0.0027 0.5045 0.3891 0.3167 0.5045
1.5702 0.13 130 1.4944 0.0027 0.4485 0.3306 0.3075 0.4485
1.4809 0.14 140 1.4387 0.0027 0.5345 0.4207 0.3588 0.5345
1.4591 0.15 150 1.3259 0.0027 0.5585 0.4330 0.3551 0.5585
1.3138 0.16 160 1.2320 0.0027 0.57 0.4478 0.3792 0.57
1.2055 0.17 170 1.1431 0.0027 0.586 0.4670 0.4603 0.586
1.1791 0.18 180 1.0841 0.0027 0.608 0.5083 0.4799 0.608
0.9323 0.19 190 0.9908 0.0027 0.6435 0.5490 0.5918 0.6435
1.0596 0.2 200 0.9285 0.0027 0.684 0.6154 0.6083 0.684
0.9785 0.21 210 0.8889 0.0027 0.7125 0.6611 0.7012 0.7125
0.8363 0.22 220 0.8356 0.0027 0.7145 0.6535 0.7233 0.7145
0.8318 0.23 230 0.8065 0.0027 0.7225 0.6618 0.6415 0.7225
0.8812 0.24 240 0.7688 0.0027 0.75 0.7028 0.7371 0.75
0.7002 0.25 250 0.7242 0.0027 0.7465 0.6989 0.7364 0.7465
0.678 0.26 260 0.6565 0.0027 0.787 0.7473 0.7711 0.787
0.648 0.27 270 0.6467 0.0027 0.7845 0.7526 0.7738 0.7845
0.5796 0.28 280 0.5743 0.0027 0.8245 0.7982 0.7989 0.8245
0.5045 0.29 290 0.5764 0.0027 0.8095 0.7825 0.7941 0.8095
0.6068 0.3 300 0.5237 0.0027 0.8485 0.8320 0.8586 0.8485
0.5789 0.31 310 0.4771 0.0027 0.852 0.8415 0.8621 0.852
0.5671 0.32 320 0.4645 0.0027 0.8725 0.8655 0.8765 0.8725
0.4609 0.33 330 0.4280 0.0027 0.878 0.8695 0.8836 0.878
0.4263 0.34 340 0.4168 0.0027 0.873 0.8696 0.8812 0.873
0.4476 0.35 350 0.4166 0.0027 0.88 0.8771 0.8802 0.88
0.3919 0.36 360 0.4005 0.0027 0.884 0.8841 0.8876 0.884
0.5108 0.37 370 0.3697 0.0027 0.882 0.8815 0.8883 0.882
0.4387 0.38 380 0.3679 0.0027 0.8875 0.8853 0.8894 0.8875
0.3192 0.39 390 0.3505 0.0027 0.883 0.8803 0.8883 0.883
0.3923 0.4 400 0.3158 0.0027 0.9025 0.9030 0.9066 0.9025
0.3959 0.41 410 0.2922 0.0027 0.9135 0.9144 0.9179 0.9135
0.3737 0.42 420 0.3082 0.0027 0.908 0.9092 0.9124 0.908
0.385 0.43 430 0.3223 0.0027 0.899 0.8962 0.9010 0.899
0.3392 0.44 440 0.3047 0.0027 0.903 0.9034 0.9058 0.903
0.2615 0.45 450 0.3186 0.0027 0.9025 0.9012 0.9025 0.9025
0.4023 0.46 460 0.3409 0.0027 0.896 0.8932 0.8986 0.896
0.3078 0.47 470 0.3052 0.0027 0.91 0.9079 0.9103 0.91
0.2658 0.48 480 0.2892 0.0027 0.9105 0.9119 0.9169 0.9105
0.4476 0.49 490 0.3052 0.0027 0.9115 0.9115 0.9127 0.9115
0.2055 0.5 500 0.2848 0.0027 0.914 0.9142 0.9149 0.914
0.4081 0.51 510 0.3081 0.0027 0.911 0.9120 0.9173 0.911
0.3362 0.52 520 0.3203 0.0027 0.9 0.8972 0.9066 0.9
0.4202 0.53 530 0.2977 0.0027 0.9085 0.9078 0.9106 0.9085
0.3556 0.54 540 0.2830 0.0027 0.915 0.9147 0.9166 0.915
0.3164 0.55 550 0.2696 0.0027 0.9195 0.9191 0.9200 0.9195
0.3359 0.56 560 0.3043 0.0027 0.9055 0.9058 0.9101 0.9055
0.255 0.57 570 0.2899 0.0027 0.9185 0.9174 0.9181 0.9185
0.1959 0.58 580 0.2978 0.0027 0.9145 0.9139 0.9181 0.9145
0.3455 0.59 590 0.2852 0.0027 0.9115 0.9110 0.9145 0.9115
0.267 0.6 600 0.2667 0.0027 0.918 0.9172 0.9180 0.918
0.3394 0.61 610 0.2532 0.0027 0.9155 0.9157 0.9167 0.9155
0.2682 0.62 620 0.2416 0.0027 0.9145 0.9149 0.9166 0.9145
0.2741 0.63 630 0.2763 0.0027 0.913 0.9138 0.9193 0.913
0.295 0.64 640 0.2492 0.0027 0.9165 0.9161 0.9167 0.9165
0.1961 0.65 650 0.2621 0.0027 0.918 0.9179 0.9191 0.918
0.3655 0.66 660 0.2451 0.0027 0.921 0.9206 0.9214 0.921
0.1153 0.67 670 0.2369 0.0027 0.9185 0.9190 0.9205 0.9185
0.2444 0.68 680 0.2389 0.0027 0.918 0.9177 0.9186 0.918
0.2205 0.69 690 0.2460 0.0027 0.9205 0.9195 0.9208 0.9205
0.1856 0.7 700 0.2711 0.0027 0.9145 0.9138 0.9171 0.9145
0.2319 0.71 710 0.2527 0.0027 0.919 0.9181 0.9194 0.919
0.3348 0.72 720 0.2700 0.0027 0.914 0.9123 0.9156 0.914
0.1814 0.73 730 0.3388 0.0027 0.894 0.8969 0.9102 0.894
0.2603 0.74 740 0.2638 0.0027 0.9245 0.9243 0.9266 0.9245
0.2582 0.75 750 0.2683 0.0027 0.9205 0.9196 0.9234 0.9205
0.3576 0.76 760 0.2746 0.0027 0.9135 0.9136 0.9143 0.9135
0.2305 0.77 770 0.2790 0.0027 0.916 0.9167 0.9229 0.916
0.2408 0.78 780 0.2393 0.0027 0.927 0.9271 0.9278 0.927
0.3282 0.79 790 0.2387 0.0027 0.9245 0.9235 0.9248 0.9245
0.3288 0.8 800 0.2167 0.0027 0.927 0.9265 0.9269 0.927
0.3258 0.81 810 0.2126 0.0027 0.9305 0.9303 0.9319 0.9305
0.1644 0.82 820 0.2094 0.0027 0.931 0.9307 0.9317 0.931
0.3519 0.83 830 0.1928 0.0027 0.9275 0.9271 0.9274 0.9275
0.1507 0.84 840 0.2451 0.0027 0.92 0.9211 0.9258 0.92
0.3902 0.85 850 0.2147 0.0027 0.928 0.9278 0.9289 0.928
0.298 0.86 860 0.2137 0.0027 0.9215 0.9207 0.9239 0.9215
0.181 0.87 870 0.2079 0.0027 0.9275 0.9273 0.9277 0.9275
0.1987 0.88 880 0.2120 0.0027 0.929 0.9284 0.9318 0.929
0.1718 0.89 890 0.2041 0.0027 0.927 0.9268 0.9287 0.927
0.1528 0.9 900 0.2103 0.0027 0.925 0.9261 0.9297 0.925
0.2216 0.91 910 0.2246 0.0027 0.9275 0.9289 0.9353 0.9275
0.277 0.92 920 0.2267 0.0027 0.9235 0.9246 0.9309 0.9235
0.2941 0.93 930 0.2211 0.0027 0.9235 0.9241 0.9297 0.9235
0.1933 0.94 940 0.2088 0.0027 0.9295 0.9303 0.9344 0.9295
0.2006 0.95 950 0.1954 0.0027 0.9285 0.9294 0.9336 0.9285
0.1879 0.96 960 0.1985 0.0027 0.93 0.9297 0.9315 0.93
0.2702 0.97 970 0.1987 0.0027 0.9315 0.9313 0.9334 0.9315
0.2915 0.98 980 0.1985 0.0027 0.931 0.9315 0.9344 0.931
0.2271 0.99 990 0.2033 0.0027 0.9285 0.9295 0.9348 0.9285
0.2967 1.0 1000 0.2298 0.0027 0.9195 0.9197 0.9224 0.9195
0.1132 1.01 1010 0.2228 0.0027 0.925 0.9250 0.9272 0.925
0.1651 1.02 1020 0.1996 0.0027 0.9215 0.9210 0.9229 0.9215
0.1574 1.03 1030 0.1796 0.0027 0.9235 0.9228 0.9241 0.9235
0.0732 1.04 1040 0.1883 0.0027 0.925 0.9252 0.9280 0.925
0.1432 1.05 1050 0.1922 0.0027 0.9195 0.9202 0.9229 0.9195
0.1183 1.06 1060 0.1994 0.0027 0.928 0.9287 0.9320 0.928
0.1178 1.07 1070 0.2157 0.0027 0.928 0.9284 0.9319 0.928
0.1397 1.08 1080 0.2176 0.0027 0.922 0.9222 0.9241 0.922
0.0635 1.09 1090 0.2186 0.0027 0.922 0.9214 0.9218 0.922
0.1598 1.1 1100 0.1864 0.0027 0.9325 0.9323 0.9330 0.9325
0.1825 1.11 1110 0.2049 0.0027 0.932 0.9320 0.9340 0.932
0.1868 1.12 1120 0.2077 0.0027 0.9325 0.9323 0.9350 0.9325
0.1579 1.13 1130 0.2047 0.0027 0.926 0.9253 0.9281 0.926
0.2095 1.1400 1140 0.1935 0.0027 0.9295 0.9296 0.9326 0.9295
0.1567 1.15 1150 0.2120 0.0027 0.926 0.9267 0.9304 0.926
0.1759 1.16 1160 0.2016 0.0027 0.925 0.9250 0.9263 0.925
0.1794 1.17 1170 0.2127 0.0027 0.9245 0.9242 0.9251 0.9245
0.1947 1.18 1180 0.1933 0.0027 0.9315 0.9312 0.9329 0.9315
0.1842 1.19 1190 0.1882 0.0027 0.936 0.9357 0.9376 0.936
0.1233 1.2 1200 0.1784 0.0027 0.939 0.9387 0.9408 0.939
0.1773 1.21 1210 0.1743 0.0027 0.9405 0.9399 0.9405 0.9405
0.1394 1.22 1220 0.1744 0.0027 0.937 0.9354 0.9374 0.937
0.1659 1.23 1230 0.1741 0.0027 0.94 0.9387 0.9406 0.94
0.1694 1.24 1240 0.1748 0.0027 0.943 0.9420 0.9431 0.943
0.0843 1.25 1250 0.2068 0.0027 0.9375 0.9361 0.9386 0.9375
0.1541 1.26 1260 0.1974 0.0027 0.934 0.9328 0.9353 0.934
0.1244 1.27 1270 0.1892 0.0027 0.931 0.9308 0.9333 0.931
0.1543 1.28 1280 0.1708 0.0027 0.939 0.9382 0.9392 0.939
0.2285 1.29 1290 0.1750 0.0027 0.933 0.9329 0.9335 0.933
0.1921 1.3 1300 0.1530 0.0027 0.9385 0.9381 0.9393 0.9385
0.1475 1.31 1310 0.1660 0.0027 0.938 0.9372 0.9384 0.938
0.0935 1.32 1320 0.1716 0.0027 0.936 0.9348 0.9368 0.936
0.1505 1.33 1330 0.1728 0.0027 0.9355 0.9345 0.9367 0.9355
0.1423 1.34 1340 0.1699 0.0027 0.9355 0.9345 0.9383 0.9355
0.228 1.35 1350 0.1735 0.0027 0.9315 0.9308 0.9350 0.9315
0.1816 1.3600 1360 0.1469 0.0027 0.9365 0.9352 0.9389 0.9365
0.1194 1.37 1370 0.1390 0.0027 0.938 0.9376 0.9384 0.938
0.128 1.38 1380 0.1528 0.0027 0.9395 0.9398 0.9435 0.9395
0.136 1.3900 1390 0.1574 0.0027 0.941 0.9413 0.9451 0.941
0.1442 1.4 1400 0.1686 0.0027 0.9365 0.9366 0.9408 0.9365
0.1585 1.41 1410 0.1724 0.0027 0.9355 0.9357 0.9387 0.9355
0.1286 1.42 1420 0.1568 0.0027 0.938 0.9380 0.9403 0.938
0.1165 1.43 1430 0.1559 0.0027 0.9375 0.9372 0.9382 0.9375
0.1511 1.44 1440 0.1590 0.0027 0.939 0.9391 0.9414 0.939
0.063 1.45 1450 0.1706 0.0027 0.9395 0.9397 0.9428 0.9395
0.1679 1.46 1460 0.1882 0.0027 0.9375 0.9378 0.9409 0.9375
0.1323 1.47 1470 0.1964 0.0027 0.9395 0.9398 0.9435 0.9395
0.2722 1.48 1480 0.1749 0.0027 0.942 0.9420 0.9444 0.942
0.1374 1.49 1490 0.1605 0.0027 0.942 0.9419 0.9419 0.942
0.2914 1.5 1500 0.1529 0.0027 0.942 0.9417 0.9418 0.942
0.092 1.51 1510 0.1543 0.0027 0.94 0.9396 0.9401 0.94
0.1392 1.52 1520 0.1550 0.0027 0.941 0.9406 0.9406 0.941
0.0958 1.53 1530 0.1489 0.0027 0.9395 0.9391 0.9404 0.9395
0.173 1.54 1540 0.1604 0.0027 0.9425 0.9420 0.9447 0.9425
0.0535 1.55 1550 0.1711 0.0027 0.9355 0.9354 0.9380 0.9355
0.1763 1.56 1560 0.1718 0.0027 0.9355 0.9353 0.9379 0.9355
0.087 1.5700 1570 0.1692 0.0027 0.937 0.9373 0.9416 0.937
0.0538 1.58 1580 0.1733 0.0027 0.938 0.9380 0.9410 0.938
0.1224 1.5900 1590 0.1725 0.0027 0.938 0.9377 0.9397 0.938
0.187 1.6 1600 0.1806 0.0027 0.9375 0.9371 0.9390 0.9375
0.1428 1.6100 1610 0.1998 0.0027 0.9325 0.9320 0.9340 0.9325
0.1706 1.62 1620 0.1845 0.0027 0.9345 0.9342 0.9355 0.9345
0.1378 1.63 1630 0.1749 0.0027 0.9355 0.9354 0.9358 0.9355
0.1472 1.6400 1640 0.1792 0.0027 0.938 0.9378 0.9393 0.938
0.2095 1.65 1650 0.1812 0.0027 0.9375 0.9371 0.9377 0.9375
0.1527 1.6600 1660 0.1646 0.0027 0.9385 0.9381 0.9383 0.9385
0.1148 1.67 1670 0.1602 0.0027 0.9425 0.9423 0.9424 0.9425
0.1568 1.6800 1680 0.1627 0.0027 0.9415 0.9413 0.9415 0.9415
0.1471 1.69 1690 0.1672 0.0027 0.9375 0.9375 0.9387 0.9375
0.1866 1.7 1700 0.1597 0.0027 0.943 0.9425 0.9428 0.943
0.259 1.71 1710 0.1568 0.0027 0.939 0.9378 0.9391 0.939
0.1514 1.72 1720 0.1522 0.0027 0.9385 0.9380 0.9390 0.9385
0.2454 1.73 1730 0.1550 0.0027 0.9435 0.9436 0.9441 0.9435
0.0998 1.74 1740 0.1604 0.0027 0.942 0.9424 0.9436 0.942
0.0891 1.75 1750 0.1613 0.0027 0.94 0.9403 0.9411 0.94
0.0875 1.76 1760 0.1786 0.0027 0.9355 0.9355 0.9364 0.9355
0.1554 1.77 1770 0.1953 0.0027 0.9335 0.9331 0.9346 0.9335
0.2474 1.78 1780 0.1830 0.0027 0.9355 0.9348 0.9364 0.9355
0.1444 1.79 1790 0.1733 0.0027 0.936 0.9350 0.9366 0.936
0.1405 1.8 1800 0.1756 0.0027 0.9325 0.9308 0.9335 0.9325
0.1052 1.81 1810 0.1817 0.0027 0.933 0.9313 0.9340 0.933
0.2039 1.8200 1820 0.1638 0.0027 0.9365 0.9352 0.9376 0.9365
0.1834 1.83 1830 0.1563 0.0027 0.94 0.9393 0.9398 0.94
0.1604 1.8400 1840 0.1432 0.0027 0.941 0.9412 0.9425 0.941
0.1529 1.85 1850 0.1408 0.0027 0.9415 0.9413 0.9431 0.9415
0.1699 1.8600 1860 0.1379 0.0027 0.94 0.9400 0.9404 0.94
0.1237 1.87 1870 0.1411 0.0027 0.9445 0.9444 0.9453 0.9445
0.088 1.88 1880 0.1435 0.0027 0.9435 0.9431 0.9443 0.9435
0.1341 1.8900 1890 0.1420 0.0027 0.945 0.9447 0.9453 0.945
0.0676 1.9 1900 0.1436 0.0027 0.946 0.9456 0.9467 0.946
0.1689 1.9100 1910 0.1456 0.0027 0.939 0.9385 0.9388 0.939
0.1048 1.92 1920 0.1459 0.0027 0.9385 0.9379 0.9379 0.9385
0.0925 1.9300 1930 0.1482 0.0027 0.94 0.9397 0.9398 0.94
0.0952 1.94 1940 0.1495 0.0027 0.9405 0.9405 0.9410 0.9405
0.1064 1.95 1950 0.1525 0.0027 0.9425 0.9427 0.9436 0.9425
0.1068 1.96 1960 0.1676 0.0027 0.935 0.9361 0.9408 0.935
0.2066 1.97 1970 0.1629 0.0027 0.9375 0.9384 0.9422 0.9375
0.1715 1.98 1980 0.1501 0.0027 0.9355 0.9361 0.9396 0.9355
0.0725 1.99 1990 0.1454 0.0027 0.9425 0.9428 0.9435 0.9425
0.1247 2.0 2000 0.1502 0.0027 0.936 0.9352 0.9377 0.936
0.1857 2.01 2010 0.1501 0.0027 0.936 0.9351 0.9382 0.936
0.0703 2.02 2020 0.1493 0.0027 0.939 0.9381 0.9413 0.939
0.0942 2.03 2030 0.1488 0.0027 0.944 0.9437 0.9449 0.944
0.1076 2.04 2040 0.1499 0.0027 0.941 0.9412 0.9428 0.941
0.0954 2.05 2050 0.1499 0.0027 0.938 0.9385 0.9416 0.938
0.0617 2.06 2060 0.1462 0.0027 0.942 0.9420 0.9428 0.942
0.0985 2.07 2070 0.1466 0.0027 0.9395 0.9389 0.9396 0.9395
0.1136 2.08 2080 0.1529 0.0027 0.94 0.9396 0.9400 0.94
0.0664 2.09 2090 0.1617 0.0027 0.9375 0.9376 0.9389 0.9375
0.1171 2.1 2100 0.1580 0.0027 0.932 0.9326 0.9351 0.932
0.096 2.11 2110 0.1536 0.0027 0.9375 0.9377 0.9393 0.9375
0.107 2.12 2120 0.1532 0.0027 0.936 0.9362 0.9377 0.936
0.1013 2.13 2130 0.1486 0.0027 0.9335 0.9339 0.9369 0.9335
0.1737 2.14 2140 0.1459 0.0027 0.934 0.9346 0.9378 0.934
0.056 2.15 2150 0.1443 0.0027 0.9335 0.9342 0.9371 0.9335
0.0564 2.16 2160 0.1472 0.0027 0.935 0.9354 0.9369 0.935
0.0827 2.17 2170 0.1519 0.0027 0.9335 0.9338 0.9359 0.9335
0.0434 2.18 2180 0.1613 0.0027 0.9355 0.9353 0.9366 0.9355
0.0572 2.19 2190 0.1737 0.0027 0.9375 0.9374 0.9394 0.9375
0.1873 2.2 2200 0.1608 0.0027 0.9395 0.9392 0.9410 0.9395
0.0435 2.21 2210 0.1588 0.0027 0.937 0.9370 0.9391 0.937
0.1286 2.22 2220 0.1597 0.0027 0.938 0.9380 0.9404 0.938
0.115 2.23 2230 0.1537 0.0027 0.941 0.9405 0.9418 0.941
0.0836 2.24 2240 0.1632 0.0027 0.9375 0.9371 0.9381 0.9375
0.1339 2.25 2250 0.1715 0.0027 0.934 0.9338 0.9351 0.934
0.0961 2.26 2260 0.1765 0.0027 0.934 0.9339 0.9361 0.934
0.0848 2.27 2270 0.1828 0.0027 0.9325 0.9322 0.9333 0.9325
0.1608 2.2800 2280 0.1789 0.0027 0.9365 0.9361 0.9370 0.9365
0.0759 2.29 2290 0.1714 0.0027 0.9405 0.9398 0.9408 0.9405
0.1003 2.3 2300 0.1648 0.0027 0.939 0.9383 0.9396 0.939
0.0487 2.31 2310 0.1635 0.0027 0.941 0.9406 0.9425 0.941
0.1517 2.32 2320 0.1579 0.0027 0.94 0.9397 0.9420 0.94
0.1331 2.33 2330 0.1552 0.0027 0.942 0.9418 0.9443 0.942
0.0625 2.34 2340 0.1586 0.0027 0.9385 0.9386 0.9425 0.9385
0.1061 2.35 2350 0.1647 0.0027 0.9385 0.9385 0.9427 0.9385
0.1616 2.36 2360 0.1573 0.0027 0.9405 0.9404 0.9439 0.9405
0.0648 2.37 2370 0.1554 0.0027 0.939 0.9390 0.9422 0.939
0.0892 2.38 2380 0.1580 0.0027 0.9385 0.9384 0.9411 0.9385
0.1772 2.39 2390 0.1562 0.0027 0.9385 0.9384 0.9415 0.9385
0.0775 2.4 2400 0.1571 0.0027 0.939 0.9389 0.9421 0.939
0.0837 2.41 2410 0.1569 0.0027 0.9385 0.9383 0.9409 0.9385
0.1363 2.42 2420 0.1570 0.0027 0.9405 0.9401 0.9423 0.9405
0.0647 2.43 2430 0.1559 0.0027 0.9395 0.9389 0.9405 0.9395
0.1773 2.44 2440 0.1526 0.0027 0.939 0.9385 0.9393 0.939
0.1588 2.45 2450 0.1484 0.0027 0.94 0.9396 0.9404 0.94
0.1238 2.46 2460 0.1460 0.0027 0.941 0.9406 0.9422 0.941
0.0555 2.4700 2470 0.1412 0.0027 0.942 0.9415 0.9432 0.942
0.0625 2.48 2480 0.1394 0.0027 0.9405 0.9402 0.9421 0.9405
0.0526 2.49 2490 0.1442 0.0027 0.941 0.9408 0.9427 0.941
0.1266 2.5 2500 0.1468 0.0027 0.9445 0.9444 0.9464 0.9445
0.0838 2.51 2510 0.1446 0.0027 0.9425 0.9423 0.9442 0.9425
0.1428 2.52 2520 0.1424 0.0027 0.9445 0.9442 0.9450 0.9445
0.1001 2.5300 2530 0.1431 0.0027 0.942 0.9416 0.9417 0.942
0.0527 2.54 2540 0.1430 0.0027 0.9415 0.9411 0.9419 0.9415
0.0626 2.55 2550 0.1406 0.0027 0.9415 0.9413 0.9415 0.9415
0.0536 2.56 2560 0.1451 0.0027 0.9415 0.9411 0.9416 0.9415
0.0914 2.57 2570 0.1462 0.0027 0.941 0.9407 0.9412 0.941
0.0562 2.58 2580 0.1496 0.0027 0.944 0.9436 0.9448 0.944
0.1598 2.59 2590 0.1501 0.0027 0.942 0.9417 0.9430 0.942
0.0802 2.6 2600 0.1430 0.0027 0.941 0.9407 0.9418 0.941
0.0668 2.61 2610 0.1416 0.0027 0.941 0.9408 0.9409 0.941
0.0349 2.62 2620 0.1455 0.0027 0.941 0.9409 0.9421 0.941
0.0503 2.63 2630 0.1448 0.0027 0.9395 0.9395 0.9411 0.9395
0.1185 2.64 2640 0.1443 0.0027 0.938 0.9381 0.9401 0.938
0.0682 2.65 2650 0.1441 0.0027 0.941 0.9409 0.9425 0.941
0.1327 2.66 2660 0.1443 0.0027 0.941 0.9409 0.9418 0.941
0.0855 2.67 2670 0.1389 0.0027 0.941 0.9410 0.9421 0.941
0.0777 2.68 2680 0.1370 0.0027 0.9395 0.9395 0.9404 0.9395
0.0757 2.69 2690 0.1366 0.0027 0.9385 0.9382 0.9386 0.9385
0.0906 2.7 2700 0.1366 0.0027 0.939 0.9386 0.9389 0.939
0.1172 2.71 2710 0.1369 0.0027 0.9385 0.9380 0.9382 0.9385
0.0962 2.7200 2720 0.1358 0.0027 0.9375 0.9370 0.9374 0.9375
0.1413 2.73 2730 0.1355 0.0027 0.9405 0.9400 0.9405 0.9405
0.1402 2.74 2740 0.1333 0.0027 0.9415 0.9411 0.9415 0.9415
0.0695 2.75 2750 0.1318 0.0027 0.9405 0.9402 0.9403 0.9405
0.0307 2.76 2760 0.1314 0.0027 0.9435 0.9431 0.9433 0.9435
0.1121 2.77 2770 0.1321 0.0027 0.9425 0.9421 0.9424 0.9425
0.0348 2.7800 2780 0.1325 0.0027 0.9425 0.9421 0.9424 0.9425
0.0362 2.79 2790 0.1351 0.0027 0.9425 0.9419 0.9428 0.9425
0.0861 2.8 2800 0.1355 0.0027 0.942 0.9414 0.9422 0.942
0.0518 2.81 2810 0.1341 0.0027 0.9425 0.9420 0.9424 0.9425
0.1777 2.82 2820 0.1325 0.0027 0.944 0.9436 0.9438 0.944
0.1185 2.83 2830 0.1313 0.0027 0.9435 0.9432 0.9434 0.9435
0.0867 2.84 2840 0.1304 0.0027 0.9435 0.9434 0.9436 0.9435
0.089 2.85 2850 0.1306 0.0027 0.9425 0.9425 0.9430 0.9425
0.0851 2.86 2860 0.1316 0.0027 0.945 0.9450 0.9458 0.945
0.0968 2.87 2870 0.1320 0.0027 0.9445 0.9445 0.9457 0.9445
0.1323 2.88 2880 0.1319 0.0027 0.945 0.9449 0.9459 0.945
0.0989 2.89 2890 0.1322 0.0027 0.9435 0.9435 0.9443 0.9435
0.0593 2.9 2900 0.1324 0.0027 0.9415 0.9415 0.9420 0.9415
0.1436 2.91 2910 0.1325 0.0027 0.9425 0.9425 0.9430 0.9425
0.0697 2.92 2920 0.1333 0.0027 0.9435 0.9434 0.9439 0.9435
0.0763 2.93 2930 0.1340 0.0027 0.944 0.9438 0.9445 0.944
0.0668 2.94 2940 0.1340 0.0027 0.944 0.9438 0.9444 0.944
0.0872 2.95 2950 0.1336 0.0027 0.9445 0.9443 0.9448 0.9445
0.0501 2.96 2960 0.1335 0.0027 0.9445 0.9444 0.9447 0.9445
0.0875 2.9700 2970 0.1335 0.0027 0.945 0.9449 0.9452 0.945
0.0773 2.98 2980 0.1335 0.0027 0.945 0.9449 0.9452 0.945
0.0745 2.99 2990 0.1335 0.0027 0.945 0.9449 0.9453 0.945
0.0922 3.0 3000 0.1335 0.0027 0.945 0.9449 0.9453 0.945

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
160
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for macapa/emotion-classifier

Finetuned
(7279)
this model

Space using macapa/emotion-classifier 1