metadata
language:
- tr
- en
license: apache-2.0
datasets:
- malhajar/meditron-tr
model-index:
- name: Mistral-7B-v0.2-meditron-turkish
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 59.56
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.79
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.35
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 66.19
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.24
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 35.94
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
name: Open LLM Leaderboard
Model Card for Model ID
Mistral-7B-v0.2-meditron-turkish is a finetuned Mistral Model version using Freeze technique on Turkish Meditron dataset of malhajar/meditron-7b-tr
using SFT Training.
This model can answer information about different excplicit ideas in medicine in Turkish and English
Model Description
- Finetuned by:
Mohamad Alhajar
- Language(s) (NLP): Turkish,English
- Finetuned from model:
mistralai/Mistral-7B-Instruct-v0.2
Prompt Template For Turkish Generation
### Kullancı:
Prompt Template For English Generation
### User:
How to Get Started with the Model
Use the code sample provided in the original post to interact with the model.
from transformers import AutoTokenizer,AutoModelForCausalLM
model_id = "malhajar/Mistral-7B-v0.2-meditron-turkish"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
torch_dtype=torch.float16,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_id)
question: "Akciğer kanseri nedir?"
# For generating a response
prompt = '''
### Kullancı:
{question}
'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True,
top_p=0.95)
response = tokenizer.decode(output[0])
print(response)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 63.34 |
AI2 Reasoning Challenge (25-Shot) | 59.56 |
HellaSwag (10-Shot) | 81.79 |
MMLU (5-Shot) | 60.35 |
TruthfulQA (0-shot) | 66.19 |
Winogrande (5-shot) | 76.24 |
GSM8k (5-shot) | 35.94 |