metadata
library_name: peft
license: llama3
base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2b197e3e-0d34-4dc3-99ac-beb79a8d6e40
results: []
See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e68ae5d029968e1f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e68ae5d029968e1f_train_data.json
type:
field_instruction: context
field_output: answerA
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/2b197e3e-0d34-4dc3-99ac-beb79a8d6e40
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/e68ae5d029968e1f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: eddysang
wandb_mode: online
wandb_name: 330ded5e-8721-4c75-b6fe-d274b9663359
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 330ded5e-8721-4c75-b6fe-d274b9663359
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false
2b197e3e-0d34-4dc3-99ac-beb79a8d6e40
This model is a fine-tuned version of WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9549
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0057 | 1 | 4.8343 |
3.6777 | 0.0514 | 9 | 3.0541 |
2.1518 | 0.1028 | 18 | 2.1509 |
2.0302 | 0.1542 | 27 | 2.0600 |
2.0249 | 0.2056 | 36 | 2.0229 |
1.9359 | 0.2570 | 45 | 2.0000 |
1.8932 | 0.3084 | 54 | 1.9865 |
1.9693 | 0.3597 | 63 | 1.9790 |
1.9258 | 0.4111 | 72 | 1.9673 |
1.9917 | 0.4625 | 81 | 1.9620 |
1.9417 | 0.5139 | 90 | 1.9563 |
1.939 | 0.5653 | 99 | 1.9549 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1