Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 570f06fa330a02a8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/570f06fa330a02a8_train_data.json
  type:
    field_input: starter_code
    field_instruction: question_content
    field_output: test
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/345fef6a-8237-4ee7-82b7-ba614660cdd1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/570f06fa330a02a8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: eddysang
wandb_mode: online
wandb_name: 835a7d05-70b3-4946-9a54-04ee779c4f19
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 835a7d05-70b3-4946-9a54-04ee779c4f19
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false

345fef6a-8237-4ee7-82b7-ba614660cdd1

This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.2883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 86

Training results

Training Loss Epoch Step Validation Loss
No log 0.0350 1 10.3792
10.3758 0.2801 8 10.3774
10.3712 0.5602 16 10.3714
10.3635 0.8403 24 10.3584
13.5544 1.1368 32 10.3373
10.2418 1.4168 40 10.3136
10.2948 1.6969 48 10.2994
10.258 1.9770 56 10.2935
10.1202 2.2735 64 10.2904
10.3454 2.5536 72 10.2889
10.0236 2.8337 80 10.2883

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mamung/345fef6a-8237-4ee7-82b7-ba614660cdd1