See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: TinyLlama/TinyLlama_v1.1
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 82fc59b447b3efcb_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/82fc59b447b3efcb_train_data.json
type:
field_instruction: question
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/3f43b31a-ed9b-4265-83df-44ed5aab71ab
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00015
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/82fc59b447b3efcb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: eddysang
wandb_mode: online
wandb_name: f62a9367-396d-43db-9468-361a83df1d0c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f62a9367-396d-43db-9468-361a83df1d0c
warmup_steps: 20
weight_decay: 0.01
xformers_attention: false
3f43b31a-ed9b-4265-83df-44ed5aab71ab
This model is a fine-tuned version of TinyLlama/TinyLlama_v1.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5218
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00015
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0078 | 1 | 1.3341 |
1.1048 | 0.0706 | 9 | 1.0437 |
0.7956 | 0.1411 | 18 | 0.7419 |
0.645 | 0.2117 | 27 | 0.6391 |
0.571 | 0.2823 | 36 | 0.5977 |
0.5684 | 0.3529 | 45 | 0.5684 |
0.5598 | 0.4234 | 54 | 0.5495 |
0.5484 | 0.4940 | 63 | 0.5374 |
0.521 | 0.5646 | 72 | 0.5295 |
0.5141 | 0.6351 | 81 | 0.5249 |
0.5016 | 0.7057 | 90 | 0.5226 |
0.5128 | 0.7763 | 99 | 0.5218 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mamung/3f43b31a-ed9b-4265-83df-44ed5aab71ab
Base model
TinyLlama/TinyLlama_v1.1