marrodion's picture
Add new SentenceTransformer model.
cb57aba verified
metadata
language: []
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:10K<n<100K
  - loss:CosineSimilarityLoss
base_model: marrodion/minilm-l12-v2-simple
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: Ugly white men*
    sentences:
      - fuck black people
      - That's assuming incels can get enough gbp for tendies.
      - Happy hari raya puasa (for those who celebrate it)! URL
  - source_sentence: Burn in hell fag
    sentences:
      - What a fucking fag
      - How do we get rid of radical islamism such as ISIS?
      - >-
        You look beautiful girl. I love your makeup. I'm also a transgender
        woman
  - source_sentence: Wtf does he know
    sentences:
      - Wtf is Muslim I've never heard this word before in my life
      - Imagine having a gf. lol what a loser am I right guys
      - kill yourself you fucking idiot cunt
  - source_sentence: fuck black people
    sentences:
      - fuck her
      - i'm gay as fuck bring it to the dm's s'il vous plait
      - Super proud of u priyanka n sidπŸ’–πŸ˜˜πŸ€—πŸ˜„πŸ‘lots of love from india
  - source_sentence: eradicate the gays
    sentences:
      - Anyone who supports ISIS terrorism globally should be eradicated.
      - This movie was filled with garbage Zionist propaganda.
      - Super proud of u priyanka n sidπŸ’–πŸ˜˜πŸ€—πŸ˜„πŸ‘lots of love from india
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on marrodion/minilm-l12-v2-simple
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: hatespeech sampled dev
          type: hatespeech-sampled-dev
        metrics:
          - type: pearson_cosine
            value: 0.5824678478663922
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.4527341031732577
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.5684440833162158
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.4501340877013548
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.5699922346841907
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.4527341031732577
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.5824678270038964
            name: Pearson Dot
          - type: spearman_dot
            value: 0.4527341031732577
            name: Spearman Dot
          - type: pearson_max
            value: 0.5824678478663922
            name: Pearson Max
          - type: spearman_max
            value: 0.4527341031732577
            name: Spearman Max

SentenceTransformer based on marrodion/minilm-l12-v2-simple

This is a sentence-transformers model finetuned from marrodion/minilm-l12-v2-simple. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: marrodion/minilm-l12-v2-simple
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the πŸ€— Hub
model = SentenceTransformer("marrodion/minilm-l12-v2-toxic-ft")
# Run inference
sentences = [
    'eradicate the gays',
    'Anyone who supports ISIS terrorism globally should be eradicated.',
    'This movie was filled with garbage Zionist propaganda.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.5825
spearman_cosine 0.4527
pearson_manhattan 0.5684
spearman_manhattan 0.4501
pearson_euclidean 0.57
spearman_euclidean 0.4527
pearson_dot 0.5825
spearman_dot 0.4527
pearson_max 0.5825
spearman_max 0.4527

Training Details

Training Dataset

Unnamed Dataset

  • Size: 33,827 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 4 tokens
    • mean: 35.5 tokens
    • max: 128 tokens
    • min: 4 tokens
    • mean: 34.35 tokens
    • max: 128 tokens
    • min: 0.0
    • mean: 0.82
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Don't waste good pussy on a trash ass nigga Stfu obviously trans people aren't retarded 0.7777777777777778
    The more I read about dumb violent things do, like beating up two women bc they wouldn't kiss for them.. the gayer I become #Pride2019 Nuke them all 0.5555555555555556
    Forget her cunt and ass and fuck her face till she pukes! @QTAnon1 Hope she fucks her all the way back to Somalia.. 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,781 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 4 tokens
    • mean: 35.77 tokens
    • max: 128 tokens
    • min: 4 tokens
    • mean: 36.67 tokens
    • max: 128 tokens
    • min: 0.11
    • mean: 0.83
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    So for Trump and his inner circle to be crying over law and order, they sure know how to follow the system huh? Yet nothing about his ways of following the law were legal. So, how is his asylum rules were ever legal if children were sick and forced to live in unconditioned areas is American or right? We need every illegal alien gang member in prison. Then deported. 1.0
    hey girl are you my dick cause im about to beat the shit out of you Reading all these hot takes from Americans, they all just seem like utter dogs. A human mind should not be this deranged, yet this is the norm in America 0.8888888888888888
    Its amazing what a failure women are in politics. Its almost like its not in their nature to be powerful. No matter how much they try, poor dears.... Tbh that cut makes him look like neonazi. He looks like he's about to lecture me about how white people are the most discriminates against racially after he called me the n word with that hard r. 0.8888888888888888
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 64
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss hatespeech-sampled-dev_spearman_cosine
0.2836 300 0.0503 0.0139 0.4258
0.5671 600 0.0143 0.0135 0.4418
0.8507 900 0.0134 0.0131 0.4527
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.1
  • PyTorch: 2.3.0
  • Accelerate: 0.30.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}