swin-transformer-class

This model is a fine-tuned version of microsoft/swinv2-base-patch4-window16-256 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2549
  • Accuracy: 0.4953
  • F1: 0.4547

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.1381 0.9748 29 2.1103 0.2594 0.1420
1.9462 1.9832 59 1.8963 0.2783 0.1481
1.7299 2.9916 89 1.6978 0.3066 0.2504
1.6406 4.0 119 1.5954 0.3585 0.3221
1.5067 4.9748 148 1.5339 0.3915 0.3527
1.4566 5.9832 178 1.4972 0.4151 0.3769
1.4487 6.9916 208 1.4635 0.4387 0.3369
1.4335 8.0 238 1.4377 0.4481 0.3958
1.3974 8.9748 267 1.4213 0.4623 0.4066
1.3542 9.9832 297 1.4004 0.4575 0.4090
1.2964 10.9916 327 1.3880 0.4434 0.3832
1.3073 12.0 357 1.3716 0.4906 0.4449
1.3256 12.9748 386 1.3664 0.4528 0.4175
1.2867 13.9832 416 1.3622 0.4434 0.4033
1.3096 14.9916 446 1.3418 0.4764 0.4281
1.3012 16.0 476 1.3321 0.4528 0.4161
1.3086 16.9748 505 1.3248 0.4481 0.3578
1.2646 17.9832 535 1.3164 0.4717 0.4269
1.2647 18.9916 565 1.3140 0.4811 0.4394
1.2673 20.0 595 1.3073 0.4670 0.4311
1.2649 20.9748 624 1.2999 0.4906 0.4319
1.2721 21.9832 654 1.3007 0.4764 0.4236
1.317 22.9916 684 1.2982 0.4670 0.4167
1.2397 24.0 714 1.3031 0.4623 0.4115
1.209 24.9748 743 1.3075 0.4811 0.4379
1.1994 25.9832 773 1.3091 0.4245 0.3765
1.2695 26.9916 803 1.3017 0.4717 0.4362
1.2167 28.0 833 1.2986 0.4575 0.4153
1.234 28.9748 862 1.3082 0.4292 0.3773
1.2726 29.9832 892 1.3003 0.4670 0.4238
1.207 30.9916 922 1.2964 0.4670 0.4260
1.1534 32.0 952 1.3059 0.4292 0.3727
1.2477 32.9748 981 1.2924 0.4858 0.4397
1.2202 33.9832 1011 1.2924 0.4623 0.3850
1.2248 34.9916 1041 1.2969 0.4434 0.3680
1.1775 36.0 1071 1.2848 0.4953 0.4485
1.2401 36.9748 1100 1.2887 0.4575 0.4214
1.2311 37.9832 1130 1.2838 0.4858 0.4420
1.2143 38.9916 1160 1.2846 0.4906 0.4354
1.1548 40.0 1190 1.2828 0.4481 0.4057
1.1405 40.9748 1219 1.2878 0.4717 0.4356
1.1957 41.9832 1249 1.2839 0.4528 0.4063
1.211 42.9916 1279 1.2853 0.4670 0.4097
1.1849 44.0 1309 1.2779 0.4811 0.4360
1.1466 44.9748 1338 1.2765 0.4764 0.4341
1.1386 45.9832 1368 1.2836 0.4623 0.4184
1.2258 46.9916 1398 1.2718 0.4717 0.4293
1.2139 48.0 1428 1.2695 0.4906 0.4409
1.1938 48.9748 1457 1.2737 0.4764 0.4385
1.2171 49.9832 1487 1.2709 0.4670 0.4189
1.1804 50.9916 1517 1.2657 0.4764 0.4327
1.143 52.0 1547 1.2701 0.4764 0.4345
1.1723 52.9748 1576 1.2783 0.4717 0.4152
1.1454 53.9832 1606 1.2670 0.5047 0.4496
1.1957 54.9916 1636 1.2709 0.4670 0.4211
1.2383 56.0 1666 1.2752 0.4670 0.4136
1.1935 56.9748 1695 1.2670 0.4623 0.4201
1.159 57.9832 1725 1.2696 0.4717 0.4199
1.2267 58.9916 1755 1.2676 0.4858 0.4404
1.2047 60.0 1785 1.2659 0.4764 0.4336
1.1168 60.9748 1814 1.2680 0.4953 0.4466
1.2396 61.9832 1844 1.2741 0.4481 0.4045
1.1193 62.9916 1874 1.2791 0.4623 0.4184
1.1587 64.0 1904 1.2657 0.4858 0.4369
1.1492 64.9748 1933 1.2736 0.4717 0.4367
1.1303 65.9832 1963 1.2683 0.4811 0.4300
1.1672 66.9916 1993 1.2683 0.4953 0.4494
1.2035 68.0 2023 1.2667 0.4811 0.4447
1.1494 68.9748 2052 1.2645 0.4858 0.4476
1.1537 69.9832 2082 1.2714 0.4811 0.4434
1.18 70.9916 2112 1.2701 0.4811 0.4344
1.1386 72.0 2142 1.2688 0.4858 0.4440
1.1757 72.9748 2171 1.2694 0.4906 0.4514
1.1335 73.9832 2201 1.2712 0.4858 0.4419
1.1669 74.9916 2231 1.2701 0.5094 0.4651
1.1862 76.0 2261 1.2684 0.4764 0.4316
1.1695 76.9748 2290 1.2642 0.4906 0.4509
1.1317 77.9832 2320 1.2687 0.4811 0.4391
1.2023 78.9916 2350 1.2647 0.5 0.4579
1.1603 80.0 2380 1.2650 0.5 0.4596
1.1461 80.9748 2409 1.2623 0.4811 0.4396
1.1356 81.9832 2439 1.2621 0.4953 0.4449
1.1646 82.9916 2469 1.2713 0.4953 0.4526
1.152 84.0 2499 1.2661 0.5047 0.4632
1.0999 84.9748 2528 1.2685 0.5047 0.4576
1.1749 85.9832 2558 1.2716 0.4858 0.4459
1.1823 86.9916 2588 1.2624 0.4906 0.4441
1.1736 88.0 2618 1.2650 0.4811 0.4377
1.1565 88.9748 2647 1.2667 0.4670 0.4226
1.1565 89.9832 2677 1.2667 0.4953 0.4453
1.192 90.9916 2707 1.2634 0.5047 0.4635
1.1271 92.0 2737 1.2639 0.4764 0.4303
1.19 92.9748 2766 1.2631 0.4858 0.4412
1.1866 93.9832 2796 1.2616 0.4953 0.4555
1.0829 94.9916 2826 1.2586 0.4953 0.4522
1.1692 96.0 2856 1.2608 0.4906 0.4497
1.1503 96.9748 2885 1.2607 0.4953 0.4551
1.1263 97.9832 2915 1.2577 0.4953 0.4543
1.2199 98.9916 2945 1.2570 0.5047 0.4601
1.1347 100.0 2975 1.2555 0.4953 0.4503
1.1583 100.9748 3004 1.2557 0.5 0.4592
1.1697 101.9832 3034 1.2578 0.4858 0.4467
1.1918 102.9916 3064 1.2572 0.5047 0.4598
1.1959 104.0 3094 1.2563 0.5094 0.4649
1.2032 104.9748 3123 1.2551 0.4906 0.4480
1.2031 105.9832 3153 1.2552 0.4906 0.4491
1.1565 106.9916 3183 1.2544 0.5142 0.4668
1.1703 108.0 3213 1.2570 0.5 0.4598
1.2085 108.9748 3242 1.2550 0.5094 0.4639
1.1641 109.9832 3272 1.2578 0.4953 0.4551
1.1846 110.9916 3302 1.2579 0.4906 0.4510
1.1989 112.0 3332 1.2560 0.5 0.4579
1.111 112.9748 3361 1.2561 0.4953 0.4545
1.1703 113.9832 3391 1.2561 0.5047 0.4567
1.165 114.9916 3421 1.2567 0.5 0.4480
1.1295 116.0 3451 1.2582 0.4953 0.4475
1.1084 116.9748 3480 1.2574 0.5 0.4571
1.1577 117.9832 3510 1.2573 0.5047 0.4617
1.156 118.9916 3540 1.2565 0.4953 0.4559
1.1491 120.0 3570 1.2564 0.5 0.4573
1.1396 120.9748 3599 1.2572 0.5 0.4534
1.1545 121.9832 3629 1.2565 0.5 0.4604
1.1796 122.9916 3659 1.2563 0.5 0.4593
1.2012 124.0 3689 1.2559 0.4858 0.4454
1.1396 124.9748 3718 1.2567 0.4953 0.4555
1.1999 125.9832 3748 1.2558 0.4858 0.4450
1.1524 126.9916 3778 1.2569 0.4953 0.4554
1.2299 128.0 3808 1.2560 0.4953 0.4525
1.1548 128.9748 3837 1.2553 0.4764 0.4375
1.1869 129.9832 3867 1.2554 0.4811 0.4426
1.1891 130.9916 3897 1.2555 0.4811 0.4423
1.1353 132.0 3927 1.2565 0.4953 0.4554
1.1717 132.9748 3956 1.2569 0.5047 0.4643
1.1536 133.9832 3986 1.2556 0.5 0.4574
1.1667 134.9916 4016 1.2555 0.5 0.4594
1.1633 136.0 4046 1.2550 0.4953 0.4551
1.1646 136.9748 4075 1.2539 0.4858 0.4457
1.1618 137.9832 4105 1.2540 0.5047 0.4594
1.1581 138.9916 4135 1.2545 0.4858 0.4460
1.117 140.0 4165 1.2549 0.4858 0.4457
1.184 140.9748 4194 1.2552 0.4906 0.4504
1.1323 141.9832 4224 1.2553 0.4906 0.4504
1.1219 142.9916 4254 1.2550 0.4953 0.4547
1.1478 144.0 4284 1.2550 0.4953 0.4547
1.1177 144.9748 4313 1.2550 0.4953 0.4547
1.1326 145.9832 4343 1.2549 0.4953 0.4547
1.1392 146.2185 4350 1.2549 0.4953 0.4547

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
18
Safetensors
Model size
86.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for masafresh/swin-transformer-class

Finetuned
(9)
this model