israel's picture
Update README.md
3d73c59 verified
metadata
license: gemma
base_model: google/gemma-7b
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
  - trl
  - sft
  - generated_from_trainer
datasets:
  - masakhane/african-ultrachat
  - israel/untrachat_en
model-index:
  - name: zephyr-7b-gemma-sft-african-ultrachat-5k
    results: []

zephyr-7b-gemma-sft-african-ultrachat-5k

This model is a fine-tuned version of google/gemma-7b on the masakhane/african-ultrachat and the israel/untrachat_en datasets. It achieves the following results on the evaluation set:

  • Loss: 1.1356

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.1994 1.0 2480 1.1954
1.0039 2.0 4960 1.0974
0.6836 3.0 7440 1.1356

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.2

Usage


# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="
zephyr-7b-gemma-sft-african-ultrachat-5k", torch_dtype=torch.bfloat16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who answewrs question in given language",
    },
    {"role": "user", "content": "what is the 3 biggest countrys in Africa?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate<eos>
# <|user|>
# what is the 3 biggest countrys in Africa?<eos>
# <|assistant|>
# The 3 biggest countries in Africa are Nigeria, Ethiopia and South Africa.

Quantized Versions through bitsandbytes


import torch
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig


quantization_config = BitsAndBytesConfig(load_in_4bit=True)

tokenizer = AutoTokenizer.from_pretrained("
zephyr-7b-gemma-sft-african-ultrachat-5k")
model = AutoModelForCausalLM.from_pretrained("
zephyr-7b-gemma-sft-african-ultrachat-5k", quantization_config=quantization_config)


pipe = pipeline("text-generation", model=model,tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto")

messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who answewrs question in given language",
    },
    {"role": "user", "content": "list languages in Africa?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])