matthieulel's picture
End of training
9cceb0b verified
|
raw
history blame
4.46 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch32-224-in21k
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-base-patch32-224-in21k-finetuned-galaxy10-decals
    results: []

vit-base-patch32-224-in21k-finetuned-galaxy10-decals

This model is a fine-tuned version of google/vit-base-patch32-224-in21k on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5180
  • Accuracy: 0.8382
  • Precision: 0.8363
  • Recall: 0.8382
  • F1: 0.8346

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.4731 0.99 124 1.3850 0.6110 0.5791 0.6110 0.5797
0.9858 2.0 249 0.8900 0.7508 0.7578 0.7508 0.7337
0.9475 3.0 374 0.7799 0.7599 0.7667 0.7599 0.7559
0.7778 4.0 499 0.6798 0.7779 0.7825 0.7779 0.7729
0.6831 4.99 623 0.6352 0.7914 0.7916 0.7914 0.7889
0.6953 6.0 748 0.5931 0.8044 0.8076 0.8044 0.8023
0.6725 7.0 873 0.7304 0.7537 0.7671 0.7537 0.7519
0.5648 8.0 998 0.6352 0.7909 0.7961 0.7909 0.7868
0.6127 8.99 1122 0.6087 0.7858 0.7879 0.7858 0.7820
0.529 10.0 1247 0.5827 0.8072 0.8074 0.8072 0.8041
0.5212 11.0 1372 0.5787 0.8179 0.8177 0.8179 0.8108
0.4665 12.0 1497 0.5597 0.8168 0.8213 0.8168 0.8134
0.5123 12.99 1621 0.5840 0.8044 0.8163 0.8044 0.8044
0.4918 14.0 1746 0.5592 0.8219 0.8221 0.8219 0.8195
0.4733 15.0 1871 0.5180 0.8382 0.8363 0.8382 0.8346
0.4552 16.0 1996 0.5673 0.8174 0.8181 0.8174 0.8153
0.4004 16.99 2120 0.5711 0.8224 0.8239 0.8224 0.8199
0.3359 18.0 2245 0.5813 0.8168 0.8153 0.8168 0.8147
0.4069 19.0 2370 0.5482 0.8343 0.8352 0.8343 0.8307
0.3783 20.0 2495 0.5658 0.8179 0.8169 0.8179 0.8150
0.3293 20.99 2619 0.5647 0.8247 0.8234 0.8247 0.8230
0.3214 22.0 2744 0.5654 0.8309 0.8289 0.8309 0.8293
0.3285 23.0 2869 0.5943 0.8213 0.8226 0.8213 0.8201
0.2934 24.0 2994 0.5931 0.8264 0.8287 0.8264 0.8259
0.3051 24.99 3118 0.5788 0.8309 0.8325 0.8309 0.8303
0.2911 26.0 3243 0.5700 0.8377 0.8354 0.8377 0.8358
0.2893 27.0 3368 0.5971 0.8286 0.8320 0.8286 0.8291
0.2794 28.0 3493 0.5908 0.8315 0.8307 0.8315 0.8303
0.2506 28.99 3617 0.5914 0.8309 0.8314 0.8309 0.8306
0.2421 29.82 3720 0.5861 0.8365 0.8366 0.8365 0.8359

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1