MultiCaReClassifier for Medical Image Classification

The MultiCaReClassifier is a model ensemble used for multilabel medical image classification. It includes classes such as:

  • image_type: 'radiology', 'pathology', 'endoscopy', 'ophthalmic_imaging', 'medical_photograph', 'electrography', 'chart'.
  • image_subtype: 'ultrasound', 'x_ray', 'ct', 'mri', 'h&e', 'immunostaining', 'fundus_photograph', 'ekg', 'eeg', etc.
  • radiology_region: 'thorax', 'head', 'abdomen', 'upper_limb', 'lower_limb', etc.
  • radiology_view: 'frontal', 'sagittal', 'axial', 'oblique', etc.
  1. Clone this repo:
!git clone https://huggingface.co/mauro-nievoff/MultiCaReClassifier
  1. Change the directory:
%cd /content/MultiCaReClassifier
  1. Import the MultiCaReClassifier class:
from MultiCaReClassifier.pipeline import *
  1. Get the predictions for a given image folder:
predictions = MultiCaReClassifier(image_folder = '/content/img')
predictions.data.head()
  • Model Training by: Facundo Roffet
  • Data Curation and Postprocessing by: Mauro Nievas Offidani
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train mauro-nievoff/MultiCaReClassifier