Chocolatine-3B-Instruct-DPO-Revised

DPO fine-tuned of microsoft/Phi-3-mini-4k-instruct (3.82B params)
using the jpacifico/french-orca-dpo-pairs-revised rlhf dataset.
Training in French also improves the model in English, surpassing the performances of its base model.
Window context = 4k tokens

Quantized 4-bit and 8-bit versions are available (see below)
A larger version Chocolatine-14B is also available in its latest version-1.2

Benchmarks

Chocolatine is the best-performing 3B model on the OpenLLM Leaderboard (august 2024)
[Update 2024-08-22] Chocolatine-3B also outperforms Microsoft's new model Phi-3.5-mini-instruct on the average benchmarks of the 3B category.

image/png

Metric Value
Avg. 27.63
IFEval 56.23
BBH 37.16
MATH Lvl 5 14.5
GPQA 9.62
MuSR 15.1
MMLU-PRO 33.21

MT-Bench-French

Chocolatine-3B-Instruct-DPO-Revised is outperforming GPT-3.5-Turbo on MT-Bench-French, used with multilingual-mt-bench and GPT-4-Turbo as LLM-judge.
Notably, this latest version of the Chocolatine-3B model is approaching the performance of Phi-3-Medium (14B) in French.

########## First turn ##########
                                                      score
model                                         turn         
gpt-4o-mini                                   1     9.28750
Chocolatine-14B-Instruct-DPO-v1.2             1     8.61250
Phi-3-medium-4k-instruct                      1     8.22500
gpt-3.5-turbo                                 1     8.13750
Chocolatine-3B-Instruct-DPO-Revised           1     7.98750
Daredevil-8B                                  1     7.88750
NeuralDaredevil-8B-abliterated                1     7.62500
Phi-3-mini-4k-instruct                        1     7.21250
Meta-Llama-3.1-8B-Instruct                    1     7.05000
vigostral-7b-chat                             1     6.78750
Mistral-7B-Instruct-v0.3                      1     6.75000
gemma-2-2b-it                                 1     6.45000
French-Alpaca-7B-Instruct_beta                1     5.68750
vigogne-2-7b-chat                             1     5.66250

########## Second turn ##########
                                                       score
model                                         turn          
gpt-4o-mini                                   2     8.912500
Chocolatine-14B-Instruct-DPO-v1.2             2     8.337500
Chocolatine-3B-Instruct-DPO-Revised           2     7.937500
Phi-3-medium-4k-instruct                      2     7.750000
gpt-3.5-turbo                                 2     7.679167
NeuralDaredevil-8B-abliterated                2     7.125000
Daredevil-8B                                  2     7.087500
Meta-Llama-3.1-8B-Instruct                    2     6.787500
Mistral-7B-Instruct-v0.3                      2     6.500000
Phi-3-mini-4k-instruct                        2     6.487500
vigostral-7b-chat                             2     6.162500
gemma-2-2b-it                                 2     6.100000
French-Alpaca-7B-Instruct_beta                2     5.487395
vigogne-2-7b-chat                             2     2.775000

########## Average ##########
                                                  score
model                                                  
gpt-4o-mini                                    9.100000
Chocolatine-14B-Instruct-DPO-v1.2              8.475000
Phi-3-medium-4k-instruct                       7.987500
Chocolatine-3B-Instruct-DPO-Revised            7.962500
gpt-3.5-turbo                                  7.908333
Daredevil-8B                                   7.487500
NeuralDaredevil-8B-abliterated                 7.375000
Meta-Llama-3.1-8B-Instruct                     6.918750
Phi-3-mini-4k-instruct                         6.850000
Mistral-7B-Instruct-v0.3                       6.625000
vigostral-7b-chat                              6.475000
gemma-2-2b-it                                  6.275000
French-Alpaca-7B-Instruct_beta                 5.587866
vigogne-2-7b-chat                              4.218750

Quantized versions

ollama run jpacifico/chocolatine-3b

Ollama Modelfile example :

FROM ./chocolatine-3b-instruct-dpo-revised-q4_k_m.gguf
TEMPLATE """{{ if .System }}<|system|>
{{ .System }}<|end|>
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}<|end|>
{{ end }}<|assistant|>
{{ .Response }}<|end|>
"""
PARAMETER stop """{"stop": ["<|end|>","<|user|>","<|assistant|>"]}"""
SYSTEM """You are a friendly assistant called Chocolatine."""

Usage

You can run this model using my Colab notebook

You can also run Chocolatine using the following code:

import transformers
from transformers import AutoTokenizer

# Format prompt
message = [
    {"role": "system", "content": "You are a helpful assistant chatbot."},
    {"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)

# Create pipeline
pipeline = transformers.pipeline(
    "text-generation",
    model=new_model,
    tokenizer=tokenizer
)

# Generate text
sequences = pipeline(
    prompt,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    num_return_sequences=1,
    max_length=200,
)
print(sequences[0]['generated_text'])

Limitations

The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanism.

  • Developed by: Jonathan Pacifico, 2024
  • Model type: LLM
  • Language(s) (NLP): French, English
  • License: MIT
Downloads last month
50
GGUF
Model size
3.82B params
Architecture
phi3

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mav23/Chocolatine-3B-Instruct-DPO-Revised-GGUF