🥨 Brezn-7B

This is right now our best performing german speaking 7B model with an apache license, with an average of 7.49 on mt-bench-de. You can test this model here: mayflowergmbh/Brezn-7B-GGUF-Chat.

Brezn-7B is a dpo aligned merge of the following models using LazyMergekit:

image/png

💻 Usage

In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [/INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.

E.g.

text = "<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"

This format is available as a chat template via the apply_chat_template() method:

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("mayflowergmbh/Brezn-7b")
tokenizer = AutoTokenizer.from_pretrained("mayflowergmbh/Brezn-7b")

messages = [
    {"role": "user", "content": "Was ist dein Lieblingsgewürz??"},
    {"role": "assistant", "content": "Nun, ich mag besonders gerne einen guten Spritzer frischen Zitronensaft. Er fügt genau die richtige Menge an würzigem Geschmack hinzu, egal was ich gerade in der Küche zubereite!"},
    {"role": "user", "content": "Hast du Mayonnaise-Rezepte?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

mt-bench-de

{
    "first_turn": 7.6625,
    "second_turn": 7.31875,
    "categories": {
        "writing": 8.75,
        "roleplay": 8.5,
        "reasoning": 6.1,
        "math": 5.05,
        "coding": 5.4,
        "extraction": 7.975,
        "stem": 9,
        "humanities": 9.15
    },
    "average": 7.490625
}

🧩 Configuration

models:
  - model: mistralai/Mistral-7B-v0.1
    # no parameters necessary for base model
  - model: FelixChao/WestSeverus-7B-DPO-v2
    parameters:
      density: 0.60
      weight: 0.30
  - model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
    parameters:
      density: 0.65
      weight: 0.40
  - model: cognitivecomputations/openchat-3.5-0106-laser
    parameters:
      density: 0.6
      weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
Downloads last month
17
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mayflowergmbh/Brezn-7b

Collection including mayflowergmbh/Brezn-7b