johannhartmann's picture
Update README.md
4a91d29 verified
---
tags:
- merge
- mergekit
- lazymergekit
- DiscoResearch/DiscoLM_German_7b_v1
- DRXD1000/Phoenix
- VAGOsolutions/SauerkrautLM-7b-v1-mistral
- malteos/hermeo-7b
base_model:
- DiscoResearch/DiscoLM_German_7b_v1
- DRXD1000/Phoenix
- VAGOsolutions/SauerkrautLM-7b-v1-mistral
- malteos/hermeo-7b
license: apache-2.0
language:
- de
- en
---
# Wiedervereinigung-7b-dpo
![image/png](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b/resolve/main/Wiedervereinigung-7b.png)
This is a dpo aligned merge of our favourite german models, scoring 7.11 on the mt-bench-de average.
Since the original models based on mistral - three of them on the brilliant german LeoLM/leo-mistral-hessianai-7b - they are reunited in this merged model.
Therefore the name, no nationalist ideas involved :-).
To improve result quality they are dpo-trained with a german translation of slimorca dpo using hermeo-7B for reject results.
If you are gpu-poor like me you can now use [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) to train with german datasets.
Kudos to the authors of the original models at [DiscoResearch](https://huggingface.co/DiscoResearch) and [VAGOsolutions](https://huggingface.co/VAGOsolutions), [Malte Ostendorff](https://huggingface.co/malteos)
and [Matthias Uhlig](https://huggingface.co/DRXD1000). We are your fan club.
This model was brought to you and the nvidia bill was paid by [Mayflower GmbH](https://mayflower.de/).
## Benchmark results: mt-bench-de
Is the merged model alone already good? Well, of course. But it is even better with the help of some dpo tuning.
```json
{
"first_turn": 7.3,
"second_turn": 6.925,
"categories": {
"writing": 8.425,
"roleplay": 8.6,
"reasoning": 5.4,
"math": 4.35,
"coding": 4.3,
"extraction": 7.975,
"stem": 8.5,
"humanities": 9.35
},
"average": 7.1125
}
```
## Other Versions
A big thank you to [LoneStriker](https://huggingface.co/LoneStriker) for the quantized models.
| Name | Quant method | Bits |
| ---- | ---- | ---- |
[Wiedervereinigung-7b-dpo](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo)| Unquantized | 16 |
[Wiedervereinigung-7b-dpo-GPTQ](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-GPTQ)| GPTQ | 4 |
[Wiedervereinigung-7b-dpo-AWQ](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-AWQ)| AWQ | 4 |
[Wiedervereinigung-7b-dpo-GGUF](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-GGUF)| GGUF | 3-8 |
[Wiedervereinigung-7b-dpo-8.0bpw-h8-exl2](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-8.0bpw-h8-exl2)| EXL2 | 8 |
[Wiedervereinigung-7b-dpo-6.0bpw-h6-exl2](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-6.0bpw-h6-exl2)| EXL2 | 6 |
[Wiedervereinigung-7b-dpo-5.0bpw-h6-exl2](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-5.0bpw-h6-exl2)| EXL2 | 5 |
[Wiedervereinigung-7b-dpo-4.0bpw-h6-exl2](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-4.0bpw-h6-exl2)| EXL2 | 4 |
[Wiedervereinigung-7b-dpo-3.0bpw-h6-exl2](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-3.0bpw-h6-exl2)| EXL2 | 3 |
Wiedervereinigung-7b is a [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing) merge of:
* [DiscoResearch/DiscoLM_German_7b_v1](https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1)
* [DRXD1000/Phoenix](https://huggingface.co/DRXD1000/Phoenix)
* [VAGOsolutions/SauerkrautLM-7b-v1-mistral](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-v1-mistral)
* [malteos/hermeo-7b](https://huggingface.co/malteos/hermeo-7b)
## 🧩 Configuration
```yaml
models:
- model: LeoLM/leo-mistral-hessianai-7b
# No parameters necessary for base model
- model: DiscoResearch/DiscoLM_German_7b_v1
parameters:
density: 0.6
weight: 0.25
- model: DRXD1000/Phoenix
parameters:
density: 0.6
weight: 0.25
- model: VAGOsolutions/SauerkrautLM-7b-v1-mistral
parameters:
density: 0.6
weight: 0.25
- model: malteos/hermeo-7b
parameters:
density: 0.6
weight: 0.25
merge_method: dare_ties
base_model: LeoLM/leo-mistral-hessianai-7b
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mayflowergmbh/Wiedervereinigung-7b-dpo"
messages = [{"role": "user", "content": "Was ist ein deutsches Large Language Model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```