metadata
language: pl
tags:
- generated_from_trainer
- text-generation
widget:
- text: Bolesław Leśmian - polski poeta
datasets:
- wikipedia
metrics:
- accuracy
model-index:
- name: gpt_neo_pl_125M
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: wikipedia 20220720.pl
type: wikipedia
args: 20220720.pl
metrics:
- name: Accuracy
type: accuracy
value: 0.4312838299951148
gpt_neo_pl_125M_v2
This model was trained from scratch on the wikipedia 20220720.pl dataset. It achieves the following results on the evaluation set:
- Loss: 3.3862
- Accuracy: 0.4313
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
5.9469 | 0.02 | 1000 | 6.5843 | 0.1435 |
4.9953 | 0.05 | 2000 | 5.7709 | 0.1911 |
4.3754 | 0.07 | 3000 | 5.2624 | 0.2331 |
3.9795 | 0.1 | 4000 | 4.8752 | 0.2731 |
3.7099 | 0.12 | 5000 | 4.5927 | 0.3039 |
3.4747 | 0.15 | 6000 | 4.3942 | 0.3230 |
3.343 | 0.17 | 7000 | 4.2879 | 0.3349 |
3.2767 | 0.2 | 8000 | 4.1698 | 0.3459 |
3.1852 | 0.22 | 9000 | 4.0925 | 0.3534 |
3.0871 | 0.25 | 10000 | 4.0239 | 0.3608 |
3.0746 | 0.27 | 11000 | 3.9646 | 0.3664 |
2.9473 | 0.3 | 12000 | 3.9245 | 0.3706 |
2.9737 | 0.32 | 13000 | 3.8742 | 0.3754 |
2.9193 | 0.35 | 14000 | 3.8285 | 0.3796 |
2.8833 | 0.37 | 15000 | 3.7952 | 0.3837 |
2.8533 | 0.4 | 16000 | 3.7616 | 0.3873 |
2.8654 | 0.42 | 17000 | 3.7296 | 0.3907 |
2.8196 | 0.44 | 18000 | 3.7049 | 0.3936 |
2.7883 | 0.47 | 19000 | 3.6786 | 0.3966 |
2.747 | 0.49 | 20000 | 3.6488 | 0.3990 |
2.7355 | 0.52 | 21000 | 3.6243 | 0.4021 |
2.7355 | 0.54 | 22000 | 3.5982 | 0.4053 |
2.6999 | 0.57 | 23000 | 3.5765 | 0.4075 |
2.7243 | 0.59 | 24000 | 3.5558 | 0.4101 |
2.6526 | 0.62 | 25000 | 3.5371 | 0.4125 |
2.641 | 0.64 | 26000 | 3.5150 | 0.4146 |
2.6602 | 0.67 | 27000 | 3.4971 | 0.4168 |
2.644 | 0.69 | 28000 | 3.4812 | 0.4192 |
2.6558 | 0.72 | 29000 | 3.4622 | 0.4215 |
2.5664 | 0.74 | 30000 | 3.4504 | 0.4229 |
2.5669 | 0.77 | 31000 | 3.4376 | 0.4245 |
2.5498 | 0.79 | 32000 | 3.4263 | 0.4263 |
2.5874 | 0.82 | 33000 | 3.4169 | 0.4274 |
2.5555 | 0.84 | 34000 | 3.4067 | 0.4286 |
2.5502 | 0.86 | 35000 | 3.3997 | 0.4298 |
2.5232 | 0.89 | 36000 | 3.3946 | 0.4302 |
2.5369 | 0.91 | 37000 | 3.3898 | 0.4309 |
2.5335 | 0.94 | 38000 | 3.3869 | 0.4313 |
2.6032 | 0.96 | 39000 | 3.3853 | 0.4315 |
2.5244 | 0.99 | 40000 | 3.3850 | 0.4314 |
Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.12.0
- Datasets 2.4.0
- Tokenizers 0.12.1