mcanoglu's picture
End of training
5e31a24 verified
metadata
base_model: bigcode/starcoderbase-1b
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: bigcode-starcoderbase-1b-finetuned-defect-detection
    results: []

bigcode-starcoderbase-1b-finetuned-defect-detection

This model is a fine-tuned version of bigcode/starcoderbase-1b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9591
  • Accuracy: 0.7666
  • Roc Auc: 0.7662
  • Precision: 0.7657
  • Recall: 0.7523

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 4711
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Roc Auc Precision Recall
0.7596 1.0 996 0.5406 0.6852 0.6897 0.6264 0.8813
0.4855 2.0 1993 0.4691 0.7377 0.7396 0.6954 0.8237
0.3547 3.0 2989 0.4832 0.7480 0.7479 0.7410 0.7441
0.2463 4.0 3986 0.5966 0.7628 0.7646 0.7196 0.8428
0.1633 5.0 4980 0.9591 0.7666 0.7662 0.7657 0.7523

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2