Transcriber-Medium / README.md
mediaProcessing's picture
update model card README.md
3b43194
|
raw
history blame
1.8 kB
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - dataset_whisper
metrics:
  - wer
model-index:
  - name: Transcriber-Medium
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: dataset_whisper
          type: dataset_whisper
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 108.52032520325203

Transcriber-Medium

This model is a fine-tuned version of openai/whisper-tiny on the dataset_whisper dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9360
  • Wer: 108.5203

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss Wer
2.7536 4.02 100 2.9360 108.5203

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.14.1
  • Tokenizers 0.13.3