Transcriber-Medium / README.md
mediaProcessing's picture
update model card README.md
3b43194
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- dataset_whisper
metrics:
- wer
model-index:
- name: Transcriber-Medium
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: dataset_whisper
type: dataset_whisper
config: default
split: test
args: default
metrics:
- name: Wer
type: wer
value: 108.52032520325203
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Transcriber-Medium
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the dataset_whisper dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9360
- Wer: 108.5203
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.7536 | 4.02 | 100 | 2.9360 | 108.5203 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.14.1
- Tokenizers 0.13.3